Suppr超能文献

通过非凹惩罚估计函数对复发事件数据进行变量选择。

Variable selection for recurrent event data via nonconcave penalized estimating function.

作者信息

Tong Xingwei, Zhu Liang, Sun Jianguo

机构信息

School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.

出版信息

Lifetime Data Anal. 2009 Jun;15(2):197-215. doi: 10.1007/s10985-008-9104-2. Epub 2008 Nov 26.

Abstract

Variable selection is an important issue in all regression analysis and in this paper, we discuss this in the context of regression analysis of recurrent event data. Recurrent event data often occur in long-term studies in which individuals may experience the events of interest more than once and their analysis has recently attracted a great deal of attention (Andersen et al., Statistical models based on counting processes, 1993; Cook and Lawless, Biometrics 52:1311-1323, 1996, The analysis of recurrent event data, 2007; Cook et al., Biometrics 52:557-571, 1996; Lawless and Nadeau, Technometrics 37:158-168, 1995; Lin et al., J R Stat Soc B 69:711-730, 2000). However, it seems that there are no established approaches to the variable selection with respect to recurrent event data. For the problem, we adopt the idea behind the nonconcave penalized likelihood approach proposed in Fan and Li (J Am Stat Assoc 96:1348-1360, 2001) and develop a nonconcave penalized estimating function approach. The proposed approach selects variables and estimates regression coefficients simultaneously and an algorithm is presented for this process. We show that the proposed approach performs as well as the oracle procedure in that it yields the estimates as if the correct submodel was known. Simulation studies are conducted for assessing the performance of the proposed approach and suggest that it works well for practical situations. The proposed methodology is illustrated by using the data from a chronic granulomatous disease study.

摘要

变量选择是所有回归分析中的一个重要问题,在本文中,我们将在复发事件数据的回归分析背景下讨论这一问题。复发事件数据经常出现在长期研究中,在这些研究中,个体可能不止一次经历感兴趣的事件,其分析最近引起了广泛关注(Andersen等人,《基于计数过程的统计模型》,1993年;Cook和Lawless,《生物统计学》52:1311 - 1323,1996年,《复发事件数据分析》,2007年;Cook等人,《生物统计学》52:557 - 571,1996年;Lawless和Nadeau,《技术计量学》37:158 - 168,1995年;Lin等人,《皇家统计学会学报B辑》69:711 - 730,2000年)。然而,对于复发事件数据的变量选择,似乎还没有既定的方法。针对这个问题,我们采用了Fan和Li(《美国统计协会杂志》96:1348 - 1360,2001年)提出的非凹惩罚似然方法背后的思想,并开发了一种非凹惩罚估计函数方法。所提出的方法同时选择变量并估计回归系数,并为此过程提出了一种算法。我们表明,所提出的方法与神谕程序表现相当,因为它产生的估计就好像已知正确的子模型一样。进行了模拟研究以评估所提出方法的性能,并表明它在实际情况下效果良好。通过使用慢性肉芽肿病研究的数据说明了所提出的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验