Chou Yi-Yu, Leporé Natasha, Chiang Ming-Chang, Avedissian Christina, Barysheva Marina, McMahon Katie L, de Zubicaray Greig I, Meredith Matthew, Wright Margaret J, Toga Arthur W, Thompson Paul M
Department of Neurology, UCLA School of Medicine, Laboratory of Neuro Imaging, Los Angeles, CA 90095-7332, USA.
Neuroimage. 2009 Feb 15;44(4):1312-23. doi: 10.1016/j.neuroimage.2008.10.036. Epub 2008 Nov 7.
Despite substantial progress in measuring the anatomical and functional variability of the human brain, little is known about the genetic and environmental causes of these variations. Here we developed an automated system to visualize genetic and environmental effects on brain structure in large brain MRI databases. We applied our multi-template segmentation approach termed "Multi-Atlas Fluid Image Alignment" to fluidly propagate hand-labeled parameterized surface meshes, labeling the lateral ventricles, in 3D volumetric MRI scans of 76 identical (monozygotic, MZ) twins (38 pairs; mean age=24.6 (SD=1.7)); and 56 same-sex fraternal (dizygotic, DZ) twins (28 pairs; mean age=23.0 (SD=1.8)), scanned as part of a 5-year research study that will eventually study over 1000 subjects. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps, derived from path analysis, revealed patterns of heritability, and their significance, in 3D. Path coefficients for the 'ACE' model that best fitted the data indicated significant contributions from genetic factors (A=7.3%), common environment (C=38.9%) and unique environment (E=53.8%) to lateral ventricular volume. Earlier-maturing occipital horn regions may also be more genetically influenced than later-maturing frontal regions. Maps visualized spatially-varying profiles of environmental versus genetic influences. The approach shows promise for automatically measuring gene-environment effects in large image databases.
尽管在测量人类大脑的解剖学和功能变异性方面取得了重大进展,但对于这些变异的遗传和环境原因却知之甚少。在这里,我们开发了一个自动化系统,以可视化大型脑磁共振成像(MRI)数据库中遗传和环境对脑结构的影响。我们将我们称为“多图谱流体图像配准”的多模板分割方法应用于流体传播手动标记的参数化表面网格,在76对同卵(单卵,MZ)双胞胎(38对;平均年龄 = 24.6(标准差 = 1.7))的3D体积MRI扫描中标记侧脑室;以及56对同性异卵(双卵,DZ)双胞胎(28对;平均年龄 = 23.0(标准差 = 1.8)),这些扫描是一项为期5年的研究的一部分,该研究最终将研究超过1000名受试者。在受试者内部对网格表面进行平均,以最小化分割误差。我们在30000个表面点中的每一个点上拟合定量遗传模型,以测量形状变异中可归因于(1)受试者之间的遗传差异、(2)每个个体独特的环境影响以及(3)共享环境效应的比例。从路径分析得出的基于表面的统计地图揭示了三维空间中的遗传力模式及其显著性。最适合数据的“ACE”模型的路径系数表明,遗传因素(A = 7.3%)、共同环境(C = 38.9%)和独特环境(E = 53.8%)对侧脑室体积有显著贡献。较早成熟的枕角区域可能也比成熟较晚的额叶区域受遗传影响更大。这些地图可视化了环境与遗传影响的空间变化分布。该方法显示出在大型图像数据库中自动测量基因 - 环境效应的潜力。