Suppr超能文献

迈向抗体Fv区域的高分辨率同源建模及其在抗体-抗原对接中的应用。

Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking.

作者信息

Sivasubramanian Arvind, Sircar Aroop, Chaudhury Sidhartha, Gray Jeffrey J

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

出版信息

Proteins. 2009 Feb 1;74(2):497-514. doi: 10.1002/prot.22309.

Abstract

High-resolution homology models are useful in structure-based protein engineering applications, especially when a crystallographic structure is unavailable. Here, we report the development and implementation of RosettaAntibody, a protocol for homology modeling of antibody variable regions. The protocol combines comparative modeling of canonical complementarity determining region (CDR) loop conformations and de novo loop modeling of CDR H3 conformation with simultaneous optimization of V(L)-V(H) rigid-body orientation and CDR backbone and side-chain conformations. The protocol was tested on a benchmark of 54 antibody crystal structures. The median root mean square deviation (rmsd) of the antigen binding pocket comprised of all the CDR residues was 1.5 A with 80% of the targets having an rmsd lower than 2.0 A. The median backbone heavy atom global rmsd of the CDR H3 loop prediction was 1.6, 1.9, 2.4, 3.1, and 6.0 A for very short (4-6 residues), short (7-9), medium (10-11), long (12-14) and very long (17-22) loops, respectively. When the set of ten top-scoring antibody homology models are used in local ensemble docking to antigen, a moderate-to-high accuracy docking prediction was achieved in seven of fifteen targets. This success in computational docking with high-resolution homology models is encouraging, but challenges still remain in modeling antibody structures for sequences with long H3 loops. This first large-scale antibody-antigen docking study using homology models reveals the level of "functional accuracy" of these structural models toward protein engineering applications.

摘要

高分辨率同源模型在基于结构的蛋白质工程应用中很有用,尤其是在没有晶体结构的情况下。在这里,我们报告了RosettaAntibody的开发和实施,这是一种用于抗体可变区同源建模的方案。该方案结合了典型互补决定区(CDR)环构象的比较建模和CDR H3构象的从头环建模,同时优化V(L)-V(H)刚体取向以及CDR主链和侧链构象。该方案在54个抗体晶体结构的基准上进行了测试。由所有CDR残基组成的抗原结合口袋的中位均方根偏差(rmsd)为1.5 Å,80%的目标rmsd低于2.0 Å。对于非常短(4-6个残基)、短(7-9个)、中等(10-11个)、长(12-14个)和非常长(17-22个)的环,CDR H3环预测的中位主链重原子全局rmsd分别为1.6、1.9、2.4、3.1和6.0 Å。当将十个得分最高的抗体同源模型用于与抗原的局部整体对接时,在十五个目标中的七个中实现了中等到高精度的对接预测。使用高分辨率同源模型在计算对接方面的这一成功令人鼓舞,但对于具有长H3环的序列进行抗体结构建模仍然存在挑战。这项首次使用同源模型进行的大规模抗体-抗原对接研究揭示了这些结构模型在蛋白质工程应用方面的“功能准确性”水平。

相似文献

4
Antibodies as a model system for comparative model refinement.
Proteins. 2010 Aug 15;78(11):2490-505. doi: 10.1002/prot.22757.
5
Predicting antibody complementarity determining region structures without classification.
Mol Biosyst. 2011 Dec;7(12):3327-34. doi: 10.1039/c1mb05223c. Epub 2011 Oct 20.
6
RosettaAntibody: antibody variable region homology modeling server.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W474-9. doi: 10.1093/nar/gkp387. Epub 2009 May 20.
8
Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint.
J Immunol. 2017 Jan 1;198(1):505-515. doi: 10.4049/jimmunol.1601137. Epub 2016 Nov 21.
9
Ab initio structure prediction of the antibody hypervariable H3 loop.
Proteins. 2013 Jun;81(6):1081-9. doi: 10.1002/prot.24240. Epub 2013 May 2.
10
Antibody modeling assessment.
Proteins. 2011 Nov;79(11):3050-66. doi: 10.1002/prot.23130. Epub 2011 Sep 21.

引用本文的文献

2
Nanobody screening and machine learning guided identification of cross-variant anti-SARS-CoV-2 neutralizing heavy-chain only antibodies.
PLoS Pathog. 2025 Jan 23;21(1):e1012903. doi: 10.1371/journal.ppat.1012903. eCollection 2025 Jan.
3
The Application of Machine Learning on Antibody Discovery and Optimization.
Molecules. 2024 Dec 16;29(24):5923. doi: 10.3390/molecules29245923.
4
Locuaz: an in silico platform for protein binders optimization.
Bioinformatics. 2024 Aug 2;40(8). doi: 10.1093/bioinformatics/btae492.
6
Next generation of multispecific antibody engineering.
Antib Ther. 2023 Dec 8;7(1):37-52. doi: 10.1093/abt/tbad027. eCollection 2024 Jan.
7
A novel Fc-enhanced humanized monoclonal antibody targeting B7-H3 suppresses the growth of ESCC.
Oncoimmunology. 2023 Nov 27;12(1):2282250. doi: 10.1080/2162402X.2023.2282250. eCollection 2023.
9
Polyreactivity of antibodies from different B-cell subpopulations is determined by distinct sequence patterns of variable region.
Front Immunol. 2023 Nov 23;14:1266668. doi: 10.3389/fimmu.2023.1266668. eCollection 2023.
10
Antiviral mechanisms of two broad-spectrum monoclonal antibodies for rabies prophylaxis and therapy.
Front Immunol. 2023 Aug 10;14:1186063. doi: 10.3389/fimmu.2023.1186063. eCollection 2023.

本文引用的文献

2
PIGS: automatic prediction of antibody structures.
Bioinformatics. 2008 Sep 1;24(17):1953-4. doi: 10.1093/bioinformatics/btn341. Epub 2008 Jul 19.
3
Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles.
J Mol Biol. 2008 Sep 12;381(4):1068-87. doi: 10.1016/j.jmb.2008.05.042. Epub 2008 May 24.
4
Funnel hunting in a rough terrain: learning and discriminating native energy funnels.
Structure. 2008 Feb;16(2):269-79. doi: 10.1016/j.str.2007.11.013.
5
Docking and scoring protein complexes: CAPRI 3rd Edition.
Proteins. 2007 Dec 1;69(4):704-18. doi: 10.1002/prot.21804.
6
Assessment of CASP7 predictions for template-based modeling targets.
Proteins. 2007;69 Suppl 8:38-56. doi: 10.1002/prot.21753.
8
Computational design of antibody-affinity improvement beyond in vivo maturation.
Nat Biotechnol. 2007 Oct;25(10):1171-6. doi: 10.1038/nbt1336. Epub 2007 Sep 23.
10
Protein-protein docking with backbone flexibility.
J Mol Biol. 2007 Oct 19;373(2):503-19. doi: 10.1016/j.jmb.2007.07.050. Epub 2007 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验