Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America.
PLoS Comput Biol. 2010 Jan 22;6(1):e1000644. doi: 10.1371/journal.pcbi.1000644.
High resolution structures of antibody-antigen complexes are useful for analyzing the binding interface and to make rational choices for antibody engineering. When a crystallographic structure of a complex is unavailable, the structure must be predicted using computational tools. In this work, we illustrate a novel approach, named SnugDock, to predict high-resolution antibody-antigen complex structures by simultaneously structurally optimizing the antibody-antigen rigid-body positions, the relative orientation of the antibody light and heavy chains, and the conformations of the six complementarity determining region loops. This approach is especially useful when the crystal structure of the antibody is not available, requiring allowances for inaccuracies in an antibody homology model which would otherwise frustrate rigid-backbone docking predictions. Local docking using SnugDock with the lowest-energy RosettaAntibody homology model produced more accurate predictions than standard rigid-body docking. SnugDock can be combined with ensemble docking to mimic conformer selection and induced fit resulting in increased sampling of diverse antibody conformations. The combined algorithm produced four medium (Critical Assessment of PRediction of Interactions-CAPRI rating) and seven acceptable lowest-interface-energy predictions in a test set of fifteen complexes. Structural analysis shows that diverse paratope conformations are sampled, but docked paratope backbones are not necessarily closer to the crystal structure conformations than the starting homology models. The accuracy of SnugDock predictions suggests a new genre of general docking algorithms with flexible binding interfaces targeted towards making homology models useful for further high-resolution predictions.
抗体-抗原复合物的高分辨率结构可用于分析结合界面,并为抗体工程做出合理选择。当复合物的晶体结构不可用时,必须使用计算工具进行预测。在这项工作中,我们展示了一种名为 SnugDock 的新方法,通过同时对抗体-抗原刚体位置、抗体轻链和重链的相对方向以及六个互补决定区环的构象进行结构优化,来预测高分辨率的抗体-抗原复合物结构。当抗体的晶体结构不可用时,这种方法特别有用,因为需要考虑抗体同源模型的不准确性,否则这将使刚性骨干对接预测受阻。使用具有最低能量的 RosettaAntibody 同源模型进行局部对接的 SnugDock 产生了比标准刚性对接更准确的预测。SnugDock 可以与整体对接结合使用,以模拟构象选择和诱导适合,从而增加不同抗体构象的采样。在十五个复合物的测试集中,组合算法产生了四个中等(相互作用预测的关键评估-CAPRI 评分)和七个可接受的最低界面能预测。结构分析表明,多样化的抗原结合部位构象被采样,但对接的抗原结合部位骨架不一定比起始同源模型更接近晶体结构构象。SnugDock 预测的准确性表明了一种新的通用对接算法类型,具有灵活的结合界面,旨在使同源模型对进一步的高分辨率预测有用。