Suppr超能文献

链接的几何耦合微器件的原位组装。

In situ assembly of linked geometrically coupled microdevices.

作者信息

Sawetzki T, Rahmouni S, Bechinger C, Marr D W M

机构信息

Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.

出版信息

Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20141-5. doi: 10.1073/pnas.0808808105. Epub 2008 Dec 12.

Abstract

Complex systems require their distinct components to function in a dynamic, integrated, and cooperative fashion. To accomplish this in current microfluidic networks, individual valves are often switched and pumps separately powered by using macroscopic methods such as applied external pressure. Direct manipulation and control at the single-device level, however, limits scalability, restricts portability, and hinders the development of massively parallel architectures that would take best advantage of microscale systems. In this article, we demonstrate that local geometry combined with a simple global field can not only reversibly drive component assembly but also power distinct devices in a parallel, locally uncoupled, and integrated fashion. By employing this single approach, we assemble and demonstrate the operation of check valves, mixers, and pistons within specially designed microfluidic environments. In addition, we show that by linking these individual components together, more complex devices such as pumps can be both fabricated and powered in situ.

摘要

复杂系统要求其不同组件以动态、集成和协作的方式运行。为了在当前的微流控网络中实现这一点,通常使用诸如施加外部压力等宏观方法来单独切换各个阀门并分别驱动泵。然而,在单设备级别进行直接操作和控制会限制可扩展性、便携性,并阻碍能够充分利用微尺度系统优势的大规模并行架构的发展。在本文中,我们证明局部几何形状与简单的全局场相结合,不仅可以可逆地驱动组件组装,还能以并行、局部解耦和集成的方式为不同的设备提供动力。通过采用这种单一方法,我们在专门设计的微流控环境中组装并展示了止回阀、混合器和活塞的运行。此外,我们表明,通过将这些单个组件连接在一起,可以原位制造和驱动更复杂的设备,如泵。

相似文献

1
In situ assembly of linked geometrically coupled microdevices.链接的几何耦合微器件的原位组装。
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20141-5. doi: 10.1073/pnas.0808808105. Epub 2008 Dec 12.
2
Fully integrated microfluidic separations systems for biochemical analysis.用于生化分析的全集成微流控分离系统。
J Chromatogr A. 2007 Oct 19;1168(1-2):170-88; discussion 169. doi: 10.1016/j.chroma.2007.06.010. Epub 2007 Jun 12.
3
Micromixing within microfluidic devices.微流控设备内的微混合
Top Curr Chem. 2011;304:27-68. doi: 10.1007/128_2011_150.
5
Recent developments in microfluidic large scale integration.微流控大规模集成的最新进展。
Curr Opin Biotechnol. 2014 Feb;25:60-8. doi: 10.1016/j.copbio.2013.08.014. Epub 2013 Sep 17.
7
Finger-Powered Electro-Digital-Microfluidics.手指驱动的电子数字微流控技术。
Methods Mol Biol. 2017;1572:293-311. doi: 10.1007/978-1-4939-6911-1_20.

引用本文的文献

2
Magnetic Bead Manipulation in Microfluidic Chips for Biological Application.用于生物应用的微流控芯片中的磁珠操控
Cyborg Bionic Syst. 2023 Apr 14;4:0023. doi: 10.34133/cbsystems.0023. eCollection 2023.
4
Friction Induces Anisotropic Propulsion in Sliding Magnetic Microtriangles.摩擦诱导滑动磁性微三角的各向异性推进。
Nano Lett. 2022 Sep 28;22(18):7408-7414. doi: 10.1021/acs.nanolett.2c02295. Epub 2022 Sep 5.
5
Collective dynamics in entangled worm and robot blobs.纠缠的蠕虫和机器人团块中的集体动力学。
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2010542118.
7
Magnetic Nanomotor-Based Maneuverable SERS Probe.基于磁性纳米马达的可操纵表面增强拉曼光谱探针。
Research (Wash D C). 2020 Jun 5;2020:7962024. doi: 10.34133/2020/7962024. eCollection 2020.
9
Ultra-extensible ribbon-like magnetic microswarm.超伸展带状磁性微群。
Nat Commun. 2018 Aug 21;9(1):3260. doi: 10.1038/s41467-018-05749-6.

本文引用的文献

4
Remote radio-frequency controlled nanoliter chemistry and chemical delivery on substrates.
Angew Chem Int Ed Engl. 2007;46(26):4991-4. doi: 10.1002/anie.200604414.
5
Viscoelasticity of dynamically self-assembled paramagnetic colloidal clusters.动态自组装顺磁胶体簇的粘弹性
Phys Rev Lett. 2007 Jan 12;98(2):028301. doi: 10.1103/PhysRevLett.98.028301. Epub 2007 Jan 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验