Suppr超能文献

通过挖掘结构片段数据库预测蛋白质二级结构。

Prediction of protein secondary structure by mining structural fragment database.

作者信息

Cheng Haitao, Sen Taner Z, Kloczkowski Andrzej, Margaritis Dimitris, Jernigan Robert L

机构信息

Department of Biochemistry, Biophysics and Molecular Biology, L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, 112 Office and Laboratory Building, Ames, IA 50011-3020, USA.

出版信息

Polymer (Guildf). 2005 May 26;46(12):4314-4321. doi: 10.1016/j.polymer.2005.02.040.

Abstract

A new method for predicting protein secondary structure from amino acid sequence has been developed. The method is based on multiple sequence alignment of the query sequence with all other sequences with known structure from the protein data bank (PDB) by using BLAST. The fragments of the alignments belonging to proteins from the PBD are then used for further analysis. We have studied various schemes of assigning weights for matching segments and calculated normalized scores to predict one of the three secondary structures: α-helix, β-sheet, or coil. We applied several artificial intelligence techniques: decision trees (DT), neural networks (NN) and support vector machines (SVM) to improve the accuracy of predictions and found that SVM gave the best performance. Preliminary data show that combining the fragment mining approach with GOR V (Kloczkowski et al, Proteins 49 (2002) 154-166) for regions of low sequence similarity improves the prediction accuracy.

摘要

一种从氨基酸序列预测蛋白质二级结构的新方法已被开发出来。该方法基于通过使用BLAST将查询序列与蛋白质数据库(PDB)中所有已知结构的其他序列进行多序列比对。然后将属于PBD中蛋白质的比对片段用于进一步分析。我们研究了为匹配片段分配权重的各种方案,并计算归一化分数以预测三种二级结构之一:α螺旋、β折叠或卷曲。我们应用了几种人工智能技术:决策树(DT)、神经网络(NN)和支持向量机(SVM)来提高预测的准确性,发现SVM表现最佳。初步数据表明,将片段挖掘方法与GOR V(Kloczkowski等人,《蛋白质》49(2002)154 - 166)相结合用于低序列相似性区域可提高预测准确性。

相似文献

引用本文的文献

本文引用的文献

7
Prediction of protein structure: the problem of fold multiplicity.蛋白质结构预测:折叠多样性问题。
Proteins. 1999;Suppl 3:199-203. doi: 10.1002/(sici)1097-0134(1999)37:3+<199::aid-prot25>3.3.co;2-p.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验