Suppr超能文献

基于上下文卷积神经网络的蛋白质二级结构预测

Protein secondary structure prediction with context convolutional neural network.

作者信息

Long Shiyang, Tian Pu

机构信息

School of Chemistry, Jilin University China.

School of Life Science, School of Artificial Intelligence, Jilin University 2699 Qian-jin Street Changchun China 130012

出版信息

RSC Adv. 2019 Nov 25;9(66):38391-38396. doi: 10.1039/c9ra05218f.

Abstract

Protein secondary structure (SS) prediction is important for studying protein structure and function. Both traditional machine learning methods and deep learning neural networks have been utilized and great progress has been achieved in approaching the theoretical limit. Convolutional and recurrent neural networks are two major types of deep learning architectures with comparable prediction accuracy but different training procedures to achieve optimal performance. We are interested in seeking a novel architectural style with competitive performance and in understanding the performance of different architectures with similar training procedures. We constructed a context convolutional neural network (Contextnet) and compared its performance with popular models ( convolutional neural network, recurrent neural network, conditional neural fields…) under similar training procedures on a Jpred dataset. The Contextnet was proven to be highly competitive. Additionally, we retrained the network with the Cullpdb dataset and compared with Jpred, ReportX, Spider3 server and MUFold-SS method, the Contextnet was found to be more Q3 accurate on a CASP13 dataset. Training procedures were found to have significant impact on the accuracy of the Contextnet.

摘要

蛋白质二级结构(SS)预测对于研究蛋白质的结构和功能至关重要。传统机器学习方法和深度学习神经网络都已被使用,并且在接近理论极限方面取得了巨大进展。卷积神经网络和循环神经网络是深度学习架构的两种主要类型,它们具有相当的预测准确性,但实现最佳性能的训练过程不同。我们有兴趣寻找一种具有竞争力性能的新颖架构风格,并了解具有相似训练过程的不同架构的性能。我们构建了一个上下文卷积神经网络(Contextnet),并在Jpred数据集上的相似训练过程下,将其性能与流行模型(卷积神经网络、循环神经网络、条件神经场……)进行比较。结果证明Contextnet具有很强的竞争力。此外,我们使用Cullpdb数据集对该网络进行重新训练,并与Jpred、ReportX、Spider3服务器和MUFold-SS方法进行比较,发现在CASP13数据集上Contextnet的Q3准确率更高。研究发现训练过程对Contextnet的准确性有重大影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a49/9075825/2ef4592b4d6f/c9ra05218f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验