Suppr超能文献

利用多序列比对信息和疏水核心形成的全局度量来提高Rosetta的性能。

Improving the performance of Rosetta using multiple sequence alignment information and global measures of hydrophobic core formation.

作者信息

Bonneau R, Strauss C E, Baker D

机构信息

Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington, USA.

出版信息

Proteins. 2001 Apr 1;43(1):1-11. doi: 10.1002/1097-0134(20010401)43:1<1::aid-prot1012>3.0.co;2-a.

Abstract

This study explores the use of multiple sequence alignment (MSA) information and global measures of hydrophobic core formation for improving the Rosetta ab initio protein structure prediction method. The most effective use of the MSA information is achieved by carrying out independent folding simulations for a subset of the homologous sequences in the MSA and then identifying the free energy minima common to all folded sequences via simultaneous clustering of the independent folding runs. Global measures of hydrophobic core formation, using ellipsoidal rather than spherical representations of the hydrophobic core, are found to be useful in removing non-native conformations before cluster analysis. Through this combination of MSA information and global measures of protein core formation, we significantly increase the performance of Rosetta on a challenging test set. Proteins 2001;43:1-11.

摘要

本研究探索利用多序列比对(MSA)信息和疏水核心形成的全局度量来改进Rosetta从头算蛋白质结构预测方法。通过对MSA中同源序列的一个子集进行独立折叠模拟,然后通过对独立折叠运行进行同步聚类来识别所有折叠序列共有的自由能最小值,从而实现MSA信息的最有效利用。发现使用疏水核心的椭球而非球形表示的疏水核心形成全局度量,在聚类分析之前去除非天然构象方面很有用。通过这种MSA信息与蛋白质核心形成全局度量的结合,我们在一个具有挑战性的测试集上显著提高了Rosetta的性能。《蛋白质》2001年;43卷:1 - 11页。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验