Suppr超能文献

质子辅助重耦合与蛋白质结构测定。

Proton assisted recoupling and protein structure determination.

作者信息

De Paëpe Gaël, Lewandowski Józef R, Loquet Antoine, Böckmann Anja, Griffin Robert G

机构信息

Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

J Chem Phys. 2008 Dec 28;129(24):245101. doi: 10.1063/1.3036928.

Abstract

We introduce a homonuclear version of third spin assisted recoupling, a second-order mechanism that can be used for polarization transfer between (13)C or (15)N spins in magic angle spinning (MAS) NMR experiments, particularly at high spinning frequencies employed in contemporary high field MAS experiments. The resulting sequence, which we refer to as proton assisted recoupling (PAR), relies on a cross-term between (1)H-(13)C (or (1)H-(15)N) couplings to mediate zero quantum (13)C-(13)C (or (15)N-(15)N recoupling). In particular, using average Hamiltonian theory we derive an effective Hamiltonian for PAR and show that the transfer is mediated by trilinear terms of the form C(1) (+/-)C(2) (-/+)H(Z) for (13)C-(13)C recoupling experiments (or N(1) (+/-)N(2) (-/+)H(Z) for (15)N-(15)N). We use analytical and numerical simulations to explain the structure of the PAR optimization maps and to delineate the PAR matching conditions. We also detail the PAR polarization transfer dependence with respect to the local molecular geometry and explain the observed reduction in dipolar truncation. Finally, we demonstrate the utility of PAR in structural studies of proteins with (13)C-(13)C spectra of uniformly (13)C, (15)N labeled microcrystalline Crh, a 85 amino acid model protein that forms a domain swapped dimer (MW=2 x 10.4 kDa). The spectra, which were acquired at high MAS frequencies (omega(r)2pi>20 kHz) and magnetic fields (750-900 MHz (1)H frequencies) using moderate rf fields, exhibit numerous cross peaks corresponding to long (up to 6-7 A) (13)C-(13)C distances which are particularly useful in protein structure determination. Using results from PAR spectra we calculate the structure of the Crh protein.

摘要

我们引入了一种同核版本的第三自旋辅助重耦,这是一种二阶机制,可用于魔角旋转(MAS)核磁共振实验中(^{13}C)或(^{15}N)自旋之间的极化转移,特别是在当代高场MAS实验所采用的高旋转频率下。由此产生的序列,我们称之为质子辅助重耦(PAR),它依赖于(^{1}H - ^{13}C)(或(^{1}H - ^{15}N))耦合之间的交叉项来介导零量子(^{13}C - ^{13}C)(或(^{15}N - ^{15}N)重耦)。具体而言,利用平均哈密顿量理论,我们推导了PAR的有效哈密顿量,并表明在(^{13}C - ^{13}C)重耦实验中,转移是由形式为(C_1^{(\pm)}C_2^{(\mp)}H(Z))的三线项介导的(在(^{15}N - ^{15}N)重耦实验中为(N_1^{(\pm)}N_2^{(\mp)}H(Z)))。我们使用解析和数值模拟来解释PAR优化图谱的结构,并描绘PAR匹配条件。我们还详细阐述了PAR极化转移对局部分子几何结构的依赖性,并解释了观察到的偶极截断降低现象。最后,我们通过对均匀(^{13}C)、(^{15}N)标记的微晶Crh(一种形成结构域交换二聚体的85个氨基酸的模型蛋白,分子量为(2×10.4 kDa))的(^{13}C - ^{13}C)谱的研究,证明了PAR在蛋白质结构研究中的实用性。这些谱图是在高MAS频率((\omega_r2\pi > 20 kHz))和磁场((750 - 900 MHz) (^{1}H)频率)下使用中等射频场采集的,显示出许多对应于长(长达(6 - 7\mathring{A}))(^{13}C - ^{13}C)距离的交叉峰,这在蛋白质结构测定中特别有用。利用PAR谱的结果,我们计算了Crh蛋白的结构。

相似文献

1
Proton assisted recoupling and protein structure determination.
J Chem Phys. 2008 Dec 28;129(24):245101. doi: 10.1063/1.3036928.
2
Heteronuclear proton assisted recoupling.
J Chem Phys. 2011 Mar 7;134(9):095101. doi: 10.1063/1.3541251.
4
Compensated second-order recoupling: application to third spin assisted recoupling.
Phys Chem Chem Phys. 2012 May 28;14(20):7246-55. doi: 10.1039/c2cp40406k. Epub 2012 Apr 18.
6
Proton assisted recoupling at high spinning frequencies.
J Phys Chem B. 2009 Jul 9;113(27):9062-9. doi: 10.1021/jp810280t.
7
(15)N-(15)N proton assisted recoupling in magic angle spinning NMR.
J Am Chem Soc. 2009 Apr 29;131(16):5769-76. doi: 10.1021/ja806578y.
8
Pulsed Third-Spin-Assisted Recoupling NMR for Obtaining Long-Range C-C and N-C Distance Restraints.
J Phys Chem B. 2020 Aug 20;124(33):7138-7151. doi: 10.1021/acs.jpcb.0c04574. Epub 2020 Aug 6.
10
Determination of Long-Range Distances by Fast Magic-Angle-Spinning Radiofrequency-Driven F-F Dipolar Recoupling NMR.
J Phys Chem B. 2018 Oct 11;122(40):9302-9313. doi: 10.1021/acs.jpcb.8b06878. Epub 2018 Sep 27.

引用本文的文献

7
Analysis of the MODIST Sequence for Selective Proton-Proton Recoupling.
J Phys Chem A. 2025 Jan 9;129(1):317-329. doi: 10.1021/acs.jpca.4c05102. Epub 2024 Dec 22.
8
Comparative analysis of polysaccharide and cell wall structure in Aspergillus nidulans and Aspergillus fumigatus by solid-state NMR.
Carbohydr Polym. 2025 Jan 15;348(Pt A):122907. doi: 10.1016/j.carbpol.2024.122907. Epub 2024 Oct 26.
9
Dipolar Recoupling in Rotating Solids.
Chem Rev. 2024 Nov 27;124(22):12844-12917. doi: 10.1021/acs.chemrev.4c00373. Epub 2024 Nov 6.
10
Homonuclear J-couplings and heteronuclear structural constraints.
J Magn Reson. 2024 Nov;368:107785. doi: 10.1016/j.jmr.2024.107785. Epub 2024 Oct 9.

本文引用的文献

1
NMR crystallography of molecular organics.
Prog Nucl Magn Reson Spectrosc. 2020 Jun-Aug;118-119:10-53. doi: 10.1016/j.pnmrs.2020.03.001. Epub 2020 Mar 19.
3
Dipole tensor-based atomic-resolution structure determination of a nanocrystalline protein by solid-state NMR.
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4621-6. doi: 10.1073/pnas.0712393105. Epub 2008 Mar 14.
4
Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core.
Science. 2008 Mar 14;319(5869):1523-6. doi: 10.1126/science.1151839.
5
Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy.
J Am Chem Soc. 2008 Mar 26;130(12):3959-66. doi: 10.1021/ja078039s. Epub 2008 Mar 6.
6
3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints.
J Am Chem Soc. 2008 Mar 19;130(11):3579-89. doi: 10.1021/ja078014t. Epub 2008 Feb 20.
8
Triple oscillating field technique for accurate distance measurements by solid-state NMR.
J Chem Phys. 2008 Jan 7;128(1):015103. doi: 10.1063/1.2816140.
10
Operator-based triple-mode Floquet theory in solid-state NMR.
J Chem Phys. 2007 Nov 28;127(20):204504. doi: 10.1063/1.2800319.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验