De Paëpe Gaël, Lewandowski Józef R, Loquet Antoine, Böckmann Anja, Griffin Robert G
Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
J Chem Phys. 2008 Dec 28;129(24):245101. doi: 10.1063/1.3036928.
We introduce a homonuclear version of third spin assisted recoupling, a second-order mechanism that can be used for polarization transfer between (13)C or (15)N spins in magic angle spinning (MAS) NMR experiments, particularly at high spinning frequencies employed in contemporary high field MAS experiments. The resulting sequence, which we refer to as proton assisted recoupling (PAR), relies on a cross-term between (1)H-(13)C (or (1)H-(15)N) couplings to mediate zero quantum (13)C-(13)C (or (15)N-(15)N recoupling). In particular, using average Hamiltonian theory we derive an effective Hamiltonian for PAR and show that the transfer is mediated by trilinear terms of the form C(1) (+/-)C(2) (-/+)H(Z) for (13)C-(13)C recoupling experiments (or N(1) (+/-)N(2) (-/+)H(Z) for (15)N-(15)N). We use analytical and numerical simulations to explain the structure of the PAR optimization maps and to delineate the PAR matching conditions. We also detail the PAR polarization transfer dependence with respect to the local molecular geometry and explain the observed reduction in dipolar truncation. Finally, we demonstrate the utility of PAR in structural studies of proteins with (13)C-(13)C spectra of uniformly (13)C, (15)N labeled microcrystalline Crh, a 85 amino acid model protein that forms a domain swapped dimer (MW=2 x 10.4 kDa). The spectra, which were acquired at high MAS frequencies (omega(r)2pi>20 kHz) and magnetic fields (750-900 MHz (1)H frequencies) using moderate rf fields, exhibit numerous cross peaks corresponding to long (up to 6-7 A) (13)C-(13)C distances which are particularly useful in protein structure determination. Using results from PAR spectra we calculate the structure of the Crh protein.
我们引入了一种同核版本的第三自旋辅助重耦,这是一种二阶机制,可用于魔角旋转(MAS)核磁共振实验中(^{13}C)或(^{15}N)自旋之间的极化转移,特别是在当代高场MAS实验所采用的高旋转频率下。由此产生的序列,我们称之为质子辅助重耦(PAR),它依赖于(^{1}H - ^{13}C)(或(^{1}H - ^{15}N))耦合之间的交叉项来介导零量子(^{13}C - ^{13}C)(或(^{15}N - ^{15}N)重耦)。具体而言,利用平均哈密顿量理论,我们推导了PAR的有效哈密顿量,并表明在(^{13}C - ^{13}C)重耦实验中,转移是由形式为(C_1^{(\pm)}C_2^{(\mp)}H(Z))的三线项介导的(在(^{15}N - ^{15}N)重耦实验中为(N_1^{(\pm)}N_2^{(\mp)}H(Z)))。我们使用解析和数值模拟来解释PAR优化图谱的结构,并描绘PAR匹配条件。我们还详细阐述了PAR极化转移对局部分子几何结构的依赖性,并解释了观察到的偶极截断降低现象。最后,我们通过对均匀(^{13}C)、(^{15}N)标记的微晶Crh(一种形成结构域交换二聚体的85个氨基酸的模型蛋白,分子量为(2×10.4 kDa))的(^{13}C - ^{13}C)谱的研究,证明了PAR在蛋白质结构研究中的实用性。这些谱图是在高MAS频率((\omega_r2\pi > 20 kHz))和磁场((750 - 900 MHz) (^{1}H)频率)下使用中等射频场采集的,显示出许多对应于长(长达(6 - 7\mathring{A}))(^{13}C - ^{13}C)距离的交叉峰,这在蛋白质结构测定中特别有用。利用PAR谱的结果,我们计算了Crh蛋白的结构。