Stanisic Danielle I, Richards Jack S, McCallum Fiona J, Michon Pascal, King Christopher L, Schoepflin Sonja, Gilson Paul R, Murphy Vincent J, Anders Robin F, Mueller Ivo, Beeson James G
Infection and Immunity Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Australia.
Infect Immun. 2009 Mar;77(3):1165-74. doi: 10.1128/IAI.01129-08. Epub 2009 Jan 12.
Substantial evidence indicates that antibodies to Plasmodium falciparum merozoite antigens play a role in protection from malaria, although the precise targets and mechanisms mediating immunity remain unclear. Different malaria antigens induce distinct immunoglobulin G (IgG) subclass responses, but the importance of different responses in protective immunity from malaria is not known and the factors determining subclass responses in vivo are poorly understood. We examined IgG and IgG subclass responses to the merozoite antigens MSP1-19 (the 19-kDa C-terminal region of merozoite surface protein 1), MSP2 (merozoite surface protein 2), and AMA-1 (apical membrane antigen 1), including different polymorphic variants of these antigens, in a longitudinal cohort of children in Papua New Guinea. IgG1 and IgG3 were the predominant subclasses of antibodies to each antigen, and all antibody responses increased in association with age and exposure without evidence of increasing polarization toward one subclass. The profiles of IgG subclasses differed somewhat for different alleles of MSP2 but not for different variants of AMA-1. Individuals did not appear to have a propensity to make a specific subclass response irrespective of the antigen. Instead, data suggest that subclass responses to each antigen are generated independently among individuals and that antigen properties, rather than host factors, are the major determinants of IgG subclass responses. High levels of AMA-1-specific IgG3 and MSP1-19-specific IgG1 were strongly predictive of a reduced risk of symptomatic malaria and high-density P. falciparum infections. However, no antibody response was significantly associated with protection from parasitization per se. Our findings have major implications for understanding human immunity and for malaria vaccine development and evaluation.
大量证据表明,针对恶性疟原虫裂殖子抗原的抗体在预防疟疾中发挥作用,尽管介导免疫的精确靶点和机制仍不清楚。不同的疟疾抗原诱导不同的免疫球蛋白G(IgG)亚类反应,但不同反应在疟疾保护性免疫中的重要性尚不清楚,且对体内决定亚类反应的因素了解甚少。我们在巴布亚新几内亚的一个儿童纵向队列中,检测了针对裂殖子抗原MSP1-19(裂殖子表面蛋白1的19 kDa C末端区域)、MSP2(裂殖子表面蛋白2)和AMA-1(顶膜抗原1)的IgG和IgG亚类反应,包括这些抗原的不同多态性变体。IgG1和IgG3是针对每种抗原的主要抗体亚类,所有抗体反应均随年龄和暴露增加,且没有证据表明向一个亚类的极化增加。MSP2不同等位基因的IgG亚类谱略有不同,但AMA-1不同变体的IgG亚类谱没有差异。无论抗原如何,个体似乎都没有产生特定亚类反应的倾向。相反,数据表明个体对每种抗原的亚类反应是独立产生的,抗原特性而非宿主因素是IgG亚类反应的主要决定因素。高水平的AMA-1特异性IgG3和MSP1-19特异性IgG1强烈预示着有症状疟疾和高密度恶性疟原虫感染风险降低。然而,没有抗体反应与预防寄生虫感染本身显著相关。我们的发现对理解人类免疫以及疟疾疫苗的开发和评估具有重要意义。