Niemeyer María Isabel, Cid L Pablo, Yusef Yamil R, Briones Rodolfo, Sepúlveda Francisco V
Centro de Estudios Científicos, Valdivia, Chile.
J Physiol. 2009 Apr 1;587(Pt 7):1387-400. doi: 10.1113/jphysiol.2008.167353. Epub 2009 Jan 19.
The ClC transport protein family comprises both Cl(-) ion channel and H(+)/Cl(-) and H(+)/NO(3)(-) exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl(-) passage and in addition serves as a staging post for H(+) exchange. This same conserved glutamate acts as a gate to regulate Cl(-) flow in ClC channels. The activity of ClC-2, a genuine Cl(-) channel, has a biphasic response to extracellular pH with activation by moderate acidification followed by abrupt channel closure at pH values lower than approximately 7. We have now investigated the molecular basis of this complex gating behaviour. First, we identify a sensor that couples extracellular acidification to complete closure of the channel. This is extracellularly-facing histidine 532 at the N-terminus of transmembrane helix Q whose neutralisation leads to channel closure in a cooperative manner. We go on to show that acidification-dependent activation of ClC-2 is voltage dependent and probably mediated by protonation of pore gate glutamate 207. Intracellular Cl(-) acts as a voltage-independent modulator, as though regulating the pK(a) of the protonatable residue. Our results suggest that voltage dependence of ClC-2 is given by hyperpolarisation-dependent penetration of protons from the extracellular side to neutralise the glutamate gate deep within the channel, which allows Cl(-) efflux. This is reminiscent of a partial exchanger cycle, suggesting that the ClC-2 channel evolved from its transporter counterparts.
ClC转运蛋白家族包括氯离子通道以及氢离子/氯离子和氢离子/硝酸根离子交换体成员。对一种细菌ClC转运体的结构研究显示,其孔道的外部开口被一个谷氨酸侧链阻塞,该侧链充当氯离子通过的门控,此外还作为氢离子交换的一个位点。这个相同的保守谷氨酸在ClC通道中充当调节氯离子流动的门控。真正的氯离子通道ClC-2的活性对细胞外pH有双相反应,适度酸化会激活该通道,而在pH值低于约7时通道会突然关闭。我们现在研究了这种复杂门控行为的分子基础。首先,我们确定了一个将细胞外酸化与通道完全关闭相耦合的传感器。这是跨膜螺旋Q的N端面向细胞外的组氨酸532,其去质子化会协同导致通道关闭。我们接着表明,ClC-2的酸化依赖性激活是电压依赖性的,可能由孔道门控谷氨酸207的质子化介导。细胞内氯离子作为一种电压非依赖性调节剂,就好像在调节可质子化残基的pKa。我们的结果表明,ClC-2的电压依赖性是由质子从细胞外侧的超极化依赖性渗透引起的,以中和通道深处的谷氨酸门控,从而允许氯离子外流。这让人联想到一个部分交换循环,表明ClC-2通道是从其转运体对应物进化而来的。