Suppr超能文献

一种用于普适医疗环境的分层、本体驱动的贝叶斯概念——以肺部疾病为例

A hierarchical, ontology-driven Bayesian concept for ubiquitous medical environments--a case study for pulmonary diseases.

作者信息

Maragoudakis Manolis, Lymberopoulos Dimitrios, Fakotakis Nikos, Spiropoulos Kostas

机构信息

Department of Information and Communication Systems Engineering, Artificial Intelligence Laboratory, University of Aegean, Greece.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3807-10. doi: 10.1109/IEMBS.2008.4650038.

Abstract

The present paper extends work on an existing computer-based Decision Support System (DSS) that aims to provide assistance to physicians as regards to pulmonary diseases. The extension deals with allowing for a hierarchical decomposition of the task, at different levels of domain granularity, using a novel approach, i.e. Hierarchical Bayesian Networks. The proposed framework uses data from various networking appliances such as mobile phones and wireless medical sensors to establish a ubiquitous environment for medical treatment of pulmonary diseases. Domain knowledge is encoded at the upper levels of the hierarchy, thus making the process of generalization easier to accomplish. The experimental results were carried out under the Pulmonary Department, University Regional Hospital Patras, Patras, Greece. They have supported our initial beliefs about the ability of Bayesian networks to provide an effective, yet semantically-oriented, means of prognosis and reasoning under conditions of uncertainty.

摘要

本文扩展了一个现有的基于计算机的决策支持系统(DSS)的相关工作,该系统旨在为医生在肺部疾病方面提供帮助。此次扩展涉及使用一种新颖的方法,即分层贝叶斯网络,在不同的领域粒度级别上对任务进行分层分解。所提出的框架利用来自各种网络设备(如手机和无线医疗传感器)的数据,为肺部疾病的医疗建立一个无处不在的环境。领域知识被编码在层次结构的上层,从而使泛化过程更容易完成。实验结果是在希腊帕特雷大学区域医院的肺病科进行的。这些结果支持了我们最初的信念,即贝叶斯网络有能力在不确定条件下提供一种有效且面向语义的预后和推理方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验