Miyashita Teiko, Kubik Stepan, Haghighi Nahideh, Steward Oswald, Guzowski John F
Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA.
J Neurosci. 2009 Jan 28;29(4):898-906. doi: 10.1523/JNEUROSCI.4588-08.2009.
The hippocampus is hypothesized to support rapid encoding of ongoing experience. A critical prerequisite for such function is the ability to readily recruit enduring synaptic plasticity in hippocampal neurons. Hippocampal long-term potentiation (LTP) and memory consolidation require expression of the immediate-early gene (IEG) Arc. To determine whether Arc transcription could be driven by limited and controlled behavioral experience, we used a rectangular track paradigm. In past electrophysiological studies, pyramidal neurons recorded from rats running in one direction on similar tracks typically exhibited a single firing field. Using fluorescence in situ hybridization, we show that the behavioral activity associated with a single lap around the track was sufficient to trigger Arc transcription in complete CA3 neuronal ensembles, as predicted given the role of CA3 in one-trial learning. In contrast, Arc transcription in CA1 ensembles was recruited incrementally, with maximal activation achieved after four laps a day for 4 consecutive days. To test whether Arc transcription is linked to learning and plasticity, or merely elicited by location-specific firing, we inactivated the medial septum, a treatment that compromises hippocampus-dependent learning and LTP but spares location-specific firing in CA1 neurons. Septal inactivation abolished track training-induced Arc transcription in CA1 and CA3 neurons, showing that Arc transcription requires plasticity-inducing stimuli. Accordingly, LTP induction activated Arc transcription in CA1 neurons in vivo. These findings demonstrate for the first time that a single brief experience, equivalent to a single crossing of a firing field, can trigger IEG expression required for long-term plasticity in the hippocampus.
海马体被认为有助于对正在进行的经历进行快速编码。这种功能的一个关键前提是能够在海马神经元中轻易诱导出持久的突触可塑性。海马体长期增强(LTP)和记忆巩固需要即刻早期基因(IEG)Arc的表达。为了确定有限且可控的行为经历是否能驱动Arc转录,我们采用了矩形轨道范式。在过去的电生理研究中,从在类似轨道上沿一个方向奔跑的大鼠记录到的锥体神经元通常表现出单个放电场。利用荧光原位杂交技术,我们发现与绕轨道一圈相关的行为活动足以触发整个CA3神经元群体中的Arc转录,正如鉴于CA3在单次试验学习中的作用所预测的那样。相比之下,CA1群体中的Arc转录是逐步诱导的,在连续4天每天跑4圈后达到最大激活。为了测试Arc转录是与学习和可塑性相关联,还是仅仅由位置特异性放电引发,我们使内侧隔区失活,这种处理会损害依赖海马体的学习和LTP,但不会影响CA1神经元中的位置特异性放电。隔区失活消除了轨道训练诱导的CA1和CA3神经元中的Arc转录,表明Arc转录需要可塑性诱导刺激。相应地,LTP诱导在体内激活了CA1神经元中的Arc转录。这些发现首次证明,一次短暂的经历,等同于单次穿过一个放电场,就能触发海马体中长期可塑性所需的IEG表达。