Suppr超能文献

用于向耳蜗神经元传递电荷和神经营养因子的聚吡咯涂层电极。

Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons.

作者信息

Richardson Rachael T, Wise Andrew K, Thompson Brianna C, Flynn Brianna O, Atkinson Patrick J, Fretwell Nicole J, Fallon James B, Wallace Gordon G, Shepherd Rob K, Clark Graeme M, O'Leary Stephen J

机构信息

The Bionic Ear Institute, East Melbourne, Victoria 3002, Australia.

出版信息

Biomaterials. 2009 May;30(13):2614-24. doi: 10.1016/j.biomaterials.2009.01.015. Epub 2009 Jan 29.

Abstract

Sensorineural hearing loss is associated with gradual degeneration of spiral ganglion neurons (SGNs), compromising hearing outcomes with cochlear implant use. Combination of neurotrophin delivery to the cochlea and electrical stimulation from a cochlear implant protects SGNs, prompting research into neurotrophin-eluting polymer electrode coatings. The electrically conducting polypyrrole/para-toluene sulfonate containing neurotrophin-3 (Ppy/pTS/NT3) was applied to 1.7 mm2 cochlear implant electrodes. Ppy/pTS/NT3-coated electrode arrays stored 2 ng NT3 and released 0.1 ng/day with electrical stimulation. Guinea pigs were implanted with Ppy/pTS or Ppy/pTS/NT3 electrode arrays two weeks after deafening via aminoglycosides. The electrodes of a subgroup of these guinea pigs were electrically stimulated for 8 h/day for 2 weeks. There was a loss of SGNs in the implanted cochleae of guinea pigs with Ppy/pTS-coated electrodes indicative of electrode insertion damage. However, guinea pigs implanted with electrically stimulated Ppy/pTS/NT3-coated electrodes had lower electrically-evoked auditory brainstem response thresholds and greater SGN densities in implanted cochleae compared to non-implanted cochleae and compared to animals implanted with Ppy/pTS-coated electrodes (p<0.05). Ppy/pTS/NT3 did not exacerbate fibrous tissue formation and did not affect electrode impedance. Drug-eluting conducting polymer coatings on cochlear implant electrodes present a clinically viable method to promote preservation of SGNs without adversely affecting the function of the cochlear implant.

摘要

感音神经性听力损失与螺旋神经节神经元(SGNs)的逐渐退化有关,这会影响人工耳蜗植入的听力效果。将神经营养因子递送至耳蜗并结合人工耳蜗的电刺激可保护SGNs,这促使人们对可释放神经营养因子的聚合物电极涂层展开研究。将含有神经营养因子-3(Ppy/pTS/NT3)的导电聚吡咯/对甲苯磺酸盐应用于面积为1.7平方毫米的人工耳蜗电极。涂有Ppy/pTS/NT3的电极阵列可储存2纳克NT3,并在电刺激下以每天0.1纳克的速度释放。通过氨基糖苷类药物致聋两周后,将涂有Ppy/pTS或Ppy/pTS/NT3的电极阵列植入豚鼠体内。对这些豚鼠亚组的电极进行每天8小时、持续2周的电刺激。植入涂有Ppy/pTS电极的豚鼠植入耳蜗中出现了SGNs损失,这表明电极插入造成了损伤。然而,与未植入耳蜗相比,以及与植入涂有Ppy/pTS电极的动物相比,植入经电刺激的涂有Ppy/pTS/NT3电极的豚鼠,其电诱发听觉脑干反应阈值更低,植入耳蜗中的SGN密度更高(p<0.05)。Ppy/pTS/NT3不会加剧纤维组织形成,也不会影响电极阻抗。人工耳蜗电极上的药物洗脱导电聚合物涂层是一种临床上可行的方法,可促进SGNs的保存,且不会对人工耳蜗的功能产生不利影响。

相似文献

1
Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons.
Biomaterials. 2009 May;30(13):2614-24. doi: 10.1016/j.biomaterials.2009.01.015. Epub 2009 Jan 29.
2
3
The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons.
Biomaterials. 2007 Jan;28(3):513-23. doi: 10.1016/j.biomaterials.2006.09.008. Epub 2006 Sep 27.
4
Development of an electrode for the artificial cochlear sensory epithelium.
Hear Res. 2015 Dec;330(Pt A):106-12. doi: 10.1016/j.heares.2015.08.007. Epub 2015 Aug 20.
5
Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons?
Hear Res. 2007 Mar;225(1-2):60-70. doi: 10.1016/j.heares.2006.12.004. Epub 2006 Dec 15.
7
The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection.
Hear Res. 2011 Aug;278(1-2):69-76. doi: 10.1016/j.heares.2011.04.010. Epub 2011 May 1.
8
Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment.
Hear Res. 2011 Dec;282(1-2):303-13. doi: 10.1016/j.heares.2011.06.007. Epub 2011 Jul 6.

引用本文的文献

1
3D Printing of Conducting Polymer Hydrogels for Electrostimulation-Assisted Tissue Engineering.
Adv Mater. 2025 Sep;37(36):e2507779. doi: 10.1002/adma.202507779. Epub 2025 Jul 26.
2
Inner Ear Organoid as a Preclinical Model of Hearing Regeneration: Progress and Applications.
Stem Cell Rev Rep. 2025 Jul 25. doi: 10.1007/s12015-025-10941-5.
4
Biomaterial-based drug delivery systems in the treatment of inner ear disorders.
J Nanobiotechnology. 2025 Apr 17;23(1):297. doi: 10.1186/s12951-025-03368-0.
5
Study on Recovery Strategy of Hearing Loss & SGN Regeneration Under Physical Regulation.
Adv Sci (Weinh). 2025 Feb;12(5):e2410919. doi: 10.1002/advs.202410919. Epub 2024 Dec 23.
6
Outcomes following cochlear implantation with eluting electrodes: A systematic review.
Laryngoscope Investig Otolaryngol. 2024 Jun 7;9(3):e1263. doi: 10.1002/lio2.1263. eCollection 2024 Jun.
7
[Research progress in targeted delivery of inner ear using nanocarriers].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2024 Apr;38(4):348-353. doi: 10.13201/j.issn.2096-7993.2024.04.017.
8
Reactive Amine Functionalized Microelectrode Arrays Provide Short-Term Benefit but Long-Term Detriment to Recording Performance.
ACS Appl Bio Mater. 2024 Feb 19;7(2):1052-1063. doi: 10.1021/acsabm.3c01014. Epub 2024 Jan 30.
9
Current advances in biomaterials for inner ear cell regeneration.
Front Neurosci. 2024 Jan 12;17:1334162. doi: 10.3389/fnins.2023.1334162. eCollection 2023.
10
Bioelectronic Neural Interfaces: Improving Neuromodulation Through Organic Conductive Coatings.
Adv Sci (Weinh). 2024 Jul;11(27):e2306275. doi: 10.1002/advs.202306275. Epub 2023 Dec 19.

本文引用的文献

1
A protocol for cryoembedding the adult guinea pig cochlea for fluorescence immunohistology.
J Neurosci Methods. 2009 Jan 30;176(2):144-51. doi: 10.1016/j.jneumeth.2008.09.007. Epub 2008 Sep 13.
2
Novel drug delivery systems for inner ear protection and regeneration after hearing loss.
Expert Opin Drug Deliv. 2008 Oct;5(10):1059-76. doi: 10.1517/17425247.5.10.1059.
3
Biocompatibility implications of polypyrrole synthesis techniques.
Biomed Mater. 2008 Sep;3(3):034124. doi: 10.1088/1748-6041/3/3/034124. Epub 2008 Sep 3.
4
5
Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.
Hear Res. 2007 Jun;228(1-2):180-7. doi: 10.1016/j.heares.2007.02.010. Epub 2007 Mar 7.
6
Residual hearing in cochlear implant patients.
Eur Arch Otorhinolaryngol. 2007 Aug;264(8):855-60. doi: 10.1007/s00405-007-0270-8. Epub 2007 Feb 27.
7
Biocompatibility of polypyrrole particles: an in-vivo study in mice.
J Pharm Pharmacol. 2007 Feb;59(2):311-5. doi: 10.1211/jpp.59.2.0017.
8
Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole.
J Control Release. 2006 Dec 1;116(3):285-94. doi: 10.1016/j.jconrel.2006.09.004. Epub 2006 Sep 29.
9
The effect of polypyrrole with incorporated neurotrophin-3 on the promotion of neurite outgrowth from auditory neurons.
Biomaterials. 2007 Jan;28(3):513-23. doi: 10.1016/j.biomaterials.2006.09.008. Epub 2006 Sep 27.
10
Inner ear therapy for neural preservation.
Audiol Neurootol. 2006;11(6):343-56. doi: 10.1159/000095896. Epub 2006 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验