Suppr超能文献

复合体I是神经末梢氧消耗的限速因素。

Complex I is rate-limiting for oxygen consumption in the nerve terminal.

作者信息

Telford Jayne E, Kilbride Seán M, Davey Gavin P

机构信息

School of Biochemistry and Immunology and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.

出版信息

J Biol Chem. 2009 Apr 3;284(14):9109-14. doi: 10.1074/jbc.M809101200. Epub 2009 Feb 4.

Abstract

Metabolic control analysis was used to determine the spread of control exerted by the electron transport chain complexes over oxygen consumption rates in the nerve terminal. Oxygen consumption rates and electron transport chain complex activities were titrated with appropriate inhibitors to determine the flux control coefficients and the inhibition thresholds in rat brain synaptosomes. The flux control coefficients for complex I, complex II/III, complex III, and complex IV were found to be 0.30 +/- 0.07, 0.20 +/- 0.03, 0.20 +/- 0.05, and 0.08 +/- 0.05, respectively. Inhibition thresholds for complex I, complex II/III, complex III, and complex IV activities were determined to be approximately 10, approximately 30, approximately 35, and 50-65%, respectively, before major changes in oxygen consumption rates were observed. These results indicate that, of the electron transport chain components, complex I exerts a high level of control over synaptosomal bioenergetics, suggesting that complex I deficiencies that are present in neurodegenerative disorders, such as Parkinson disease, are sufficient to compromise oxygen consumption in the synaptosomal model of the nerve terminal.

摘要

代谢控制分析被用于确定电子传递链复合物对神经末梢氧消耗率所施加控制的分布情况。用适当的抑制剂滴定氧消耗率和电子传递链复合物活性,以确定大鼠脑突触体中的通量控制系数和抑制阈值。发现复合物I、复合物II/III、复合物III和复合物IV的通量控制系数分别为0.30±0.07、0.20±0.03、0.20±0.05和0.08±0.05。在观察到氧消耗率发生重大变化之前,复合物I、复合物II/III、复合物III和复合物IV活性的抑制阈值分别确定为约10%、约30%、约35%和50 - 65%。这些结果表明,在电子传递链组分中,复合物I对突触体生物能量学施加高水平的控制,这表明在神经退行性疾病(如帕金森病)中存在的复合物I缺陷足以损害神经末梢突触体模型中的氧消耗。

相似文献

1
Complex I is rate-limiting for oxygen consumption in the nerve terminal.
J Biol Chem. 2009 Apr 3;284(14):9109-14. doi: 10.1074/jbc.M809101200. Epub 2009 Feb 4.
2
Decylubiquinone increases mitochondrial function in synaptosomes.
J Biol Chem. 2010 Mar 19;285(12):8639-45. doi: 10.1074/jbc.M109.079780. Epub 2010 Jan 14.
3
Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria.
J Neurochem. 1996 Apr;66(4):1617-24. doi: 10.1046/j.1471-4159.1996.66041617.x.
4
Complex I Controls Mitochondrial and Plasma Membrane Potentials in Nerve Terminals.
Neurochem Res. 2021 Jan;46(1):100-107. doi: 10.1007/s11064-020-02990-8. Epub 2020 Mar 4.
6
Age-related changes in H2O2 production and bioenergetics in rat brain synaptosomes.
Biochim Biophys Acta. 2008 Jul-Aug;1777(7-8):783-8. doi: 10.1016/j.bbabio.2008.05.445. Epub 2008 Jun 2.
7
Effects of resveratrol on the rat brain respiratory chain.
Drugs Exp Clin Res. 1999;25(2-3):87-97.
8
Mitochondrial Complex I Activity is Conditioned by Supercomplex I-IIIIV Assembly in Brain Cells: Relevance for Parkinson's Disease.
Neurochem Res. 2017 Jun;42(6):1676-1682. doi: 10.1007/s11064-017-2191-2. Epub 2017 Feb 14.
9
Age-related deficiencies in complex I endogenous substrate availability and reserve capacity of complex IV in cortical neuron electron transport.
Biochim Biophys Acta. 2010 Feb;1797(2):167-76. doi: 10.1016/j.bbabio.2009.09.009. Epub 2009 Sep 30.

引用本文的文献

3
Reduced expression of the serotonin transporter impacts mitochondria in a sexually dimorphic manner.
Biochem Biophys Rep. 2024 Dec 13;41:101895. doi: 10.1016/j.bbrep.2024.101895. eCollection 2025 Mar.
7
Isoflurane inhibition of endocytosis is an anesthetic mechanism of action.
Curr Biol. 2022 Jul 25;32(14):3016-3032.e3. doi: 10.1016/j.cub.2022.05.037. Epub 2022 Jun 9.
8
Impact of Fatty Acid-Binding Proteins in α-Synuclein-Induced Mitochondrial Injury in Synucleinopathy.
Biomedicines. 2021 May 17;9(5):560. doi: 10.3390/biomedicines9050560.
9
The Multifaceted Roles of Zinc in Neuronal Mitochondrial Dysfunction.
Biomedicines. 2021 Apr 29;9(5):489. doi: 10.3390/biomedicines9050489.
10
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility.
Neurochem Res. 2021 Aug;46(8):1913-1932. doi: 10.1007/s11064-021-03335-9. Epub 2021 Apr 30.

本文引用的文献

1
Partial inhibition of complex I activity increases Ca-independent glutamate release rates from depolarized synaptosomes.
J Neurochem. 2008 Jul;106(2):826-34. doi: 10.1111/j.1471-4159.2008.05441.x. Epub 2008 Apr 28.
2
Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria.
J Neurochem. 2008 Jul;106(1):299-312. doi: 10.1111/j.1471-4159.2008.05383.x. Epub 2008 Jul 1.
3
Complex I deficiency in Parkinson's disease frontal cortex.
Brain Res. 2008 Jan 16;1189:215-8. doi: 10.1016/j.brainres.2007.10.061. Epub 2007 Nov 1.
5
Mitochondrial ND5 mutations in idiopathic Parkinson's disease.
Biochem Biophys Res Commun. 2005 Jan 21;326(3):667-9. doi: 10.1016/j.bbrc.2004.11.093.
6
High frequency of mitochondrial complex I mutations in Parkinson's disease and aging.
Neurobiol Aging. 2004 Nov-Dec;25(10):1273-81. doi: 10.1016/j.neurobiolaging.2004.02.020.
7
Oxidative phosphorylation by in situ synaptosomal mitochondria from whole brain of young and old rats.
J Neurochem. 2003 Aug;86(4):1032-41. doi: 10.1046/j.1471-4159.2003.01915.x.
9
In vivo control of respiration by cytochrome c oxidase in human cells.
Free Radic Biol Med. 2000 Aug;29(3-4):202-10. doi: 10.1016/s0891-5849(00)00303-8.
10
A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients.
Neurobiol Aging. 2000 May-Jun;21(3):455-62. doi: 10.1016/s0197-4580(00)00112-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验