Unité de Neurosciences Intégratives et Computationelles, CNRS Gif sur Yvette, France.
Front Neuroinform. 2009 Jan 27;2:11. doi: 10.3389/neuro.11.011.2008. eCollection 2008.
Computational neuroscience has produced a diversity of software for simulations of networks of spiking neurons, with both negative and positive consequences. On the one hand, each simulator uses its own programming or configuration language, leading to considerable difficulty in porting models from one simulator to another. This impedes communication between investigators and makes it harder to reproduce and build on the work of others. On the other hand, simulation results can be cross-checked between different simulators, giving greater confidence in their correctness, and each simulator has different optimizations, so the most appropriate simulator can be chosen for a given modelling task. A common programming interface to multiple simulators would reduce or eliminate the problems of simulator diversity while retaining the benefits. PyNN is such an interface, making it possible to write a simulation script once, using the Python programming language, and run it without modification on any supported simulator (currently NEURON, NEST, PCSIM, Brian and the Heidelberg VLSI neuromorphic hardware). PyNN increases the productivity of neuronal network modelling by providing high-level abstraction, by promoting code sharing and reuse, and by providing a foundation for simulator-agnostic analysis, visualization and data-management tools. PyNN increases the reliability of modelling studies by making it much easier to check results on multiple simulators. PyNN is open-source software and is available from http://neuralensemble.org/PyNN.
计算神经科学已经产生了多种用于模拟尖峰神经元网络的软件,这些软件既有积极的影响,也有消极的影响。一方面,每个模拟器都使用自己的编程或配置语言,导致将模型从一个模拟器移植到另一个模拟器非常困难。这阻碍了研究人员之间的交流,也使得复制和利用他人的工作更加困难。另一方面,不同模拟器之间可以对模拟结果进行交叉检查,从而提高其正确性的可信度,并且每个模拟器都有不同的优化,因此可以为给定的建模任务选择最合适的模拟器。一个多模拟器的通用编程接口将减少或消除模拟器多样性的问题,同时保留其优点。PyNN 就是这样一个接口,它使得使用 Python 编程语言编写一次模拟脚本,并在任何支持的模拟器(目前是 NEURON、NEST、PCSIM、Brian 和海德堡的 VLSI 神经形态硬件)上无需修改就可以运行成为可能。PyNN 通过提供高级抽象、促进代码共享和重用以及为与模拟器无关的分析、可视化和数据管理工具提供基础,提高了神经元网络建模的生产力。PyNN 通过使在多个模拟器上检查结果变得更加容易,提高了建模研究的可靠性。PyNN 是开源软件,可以从 http://neuralensemble.org/PyNN 获得。