Suppr超能文献

β-羟异戊酰紫草素抑制肿瘤血管生成的机制。

Mechanism of inhibition of tumor angiogenesis by beta-hydroxyisovalerylshikonin.

机构信息

Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, 2-1 Hiroshima, Wako, Saitama, Japan.

出版信息

Cancer Sci. 2009 Feb;100(2):269-77. doi: 10.1111/j.1349-7006.2008.01049.x.

Abstract

Shikonin and beta-hydroxyisovalerylshikonin (beta-HIVS) from Lithospermum erythrorhizon inhibit angiogenesis via inhibition of vascular endothelial growth factor receptors (VEGFR) in an adenosine triphosphate-non-competitive manner, although the underlying molecular mechanism has not been fully understood. In the present study, we found that beta-HIVS inhibited angiogenesis within chicken chorioallantoic membrane approximately threefold more efficiently than shikonin. beta-HIVS also significantly inhibited angiogenesis in two other assays, induced either by Lewis lung carcinoma cells implanted in mouse dorsal skin or by VEGF in s.c. implanted Matrigel plugs and metastasis of Lewis lung carcinoma cells to lung. Therefore, using beta-HIVS as a bioprobe, we investigated the molecular mechanism of shikonin's anti-angiogenic actions. beta-HIVS inhibited the phosphorylation and expression of VEGFR2 and Tie2 without affecting VEGFR1 and fibroblast growth factor receptor 1 levels. beta-HIVS suppressed the phosphorylation but not the expression of extracellular signal-regulated kinase, and an Sp1-dependent transactivation of the VEGFR2 and Tie2 promoters, thereby suppressing the proliferation of vascular endothelial and progenitor cells. This was mimicked by an Sp1 inhibitor mithramycin A and partially rescued by Sp1 overexpression. These results implicate potential use of shikonin and beta-HIVS as leading compounds for clinical application in the future by virtue of their unique properties including: (i) inhibition of VEGFR2 and Tie2 phosphorylation in an adenosine triphosphate-non-competitive manner; (ii) simultaneous inhibition of the phosphorylation and expression of VEGFR2 and Tie2; and (iii) bifunctional inhibition of the growth in endothelial cells and vascular remodeling.

摘要

紫草素和 β-羟基异戊酰紫草素(β-HIVS)从紫草中抑制血管生成通过抑制血管内皮生长因子受体(VEGFR)在三磷酸腺苷非竞争的方式,虽然潜在的分子机制尚未完全理解。在本研究中,我们发现β-HIVS 抑制血管生成内鸡绒毛尿囊膜大约三倍更有效比紫草素。β-HIVS 也显著抑制血管生成在另外两个检测,通过植入小鼠背部皮肤或 VEGF 诱导的 Lewis 肺癌细胞诱导的和 s.c. 植入 Matrigel 插件和转移 Lewis 肺癌细胞到肺。因此,用β-HIVS 作为生物探针,我们研究了紫草素的抗血管生成作用的分子机制。β-HIVS 抑制 VEGFR2 和 Tie2 的磷酸化和表达而不影响 VEGFR1 和成纤维细胞生长因子受体 1 水平。β-HIVS 抑制磷酸化而不是表达细胞外信号调节激酶,和一个 Sp1 依赖的 VEGFR2 和 Tie2 启动子的转录激活,从而抑制血管内皮和祖细胞的增殖。这是由 Sp1 抑制剂米托蒽醌 A 模拟和部分通过 Sp1 过表达挽救。这些结果暗示紫草素和 β-HIVS 的潜在用途作为临床应用的先导化合物在未来由于其独特的性能,包括:(i)抑制 VEGFR2 和 Tie2 的磷酸化在三磷酸腺苷非竞争的方式;(ii)同时抑制磷酸化和表达的 VEGFR2 和 Tie2;和(iii)双向抑制内皮细胞和血管重塑的生长。

相似文献

1
Mechanism of inhibition of tumor angiogenesis by beta-hydroxyisovalerylshikonin.
Cancer Sci. 2009 Feb;100(2):269-77. doi: 10.1111/j.1349-7006.2008.01049.x.
2
Ginkgo biloba exocarp extracts inhibits angiogenesis and its effects on Wnt/β-catenin-VEGF signaling pathway in Lewis lung cancer.
J Ethnopharmacol. 2016 Nov 4;192:406-412. doi: 10.1016/j.jep.2016.09.018. Epub 2016 Sep 17.
3
Opposite angiogenic outcome of curcumin against ischemia and Lewis lung cancer models: in silico, in vitro and in vivo studies.
Biochim Biophys Acta. 2014 Sep;1842(9):1742-54. doi: 10.1016/j.bbadis.2014.06.019. Epub 2014 Jun 23.
4
Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway.
Carcinogenesis. 2009 Apr;30(4):655-61. doi: 10.1093/carcin/bgp039. Epub 2009 Feb 18.
5
Antrodia cinnamomea produces anti-angiogenic effects by inhibiting the VEGFR2 signaling pathway.
J Ethnopharmacol. 2018 Jun 28;220:239-249. doi: 10.1016/j.jep.2018.03.041. Epub 2018 Mar 30.
9
Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling.
Lab Invest. 2009 Jan;89(1):38-46. doi: 10.1038/labinvest.2008.106. Epub 2008 Nov 10.
10
VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2.
Cell Death Differ. 2010 Mar;17(3):499-512. doi: 10.1038/cdd.2009.152. Epub 2009 Oct 16.

引用本文的文献

2
β-Hydroxyisovaleryl-Shikonin Exerts an Antitumor Effect on Pancreatic Cancer Through the PI3K/AKT Signaling Pathway.
Front Oncol. 2022 Jul 4;12:904258. doi: 10.3389/fonc.2022.904258. eCollection 2022.
3
Molecular mechanism of shikonin inhibiting tumor growth and potential application in cancer treatment.
Toxicol Res (Camb). 2021 Nov 26;10(6):1077-1084. doi: 10.1093/toxres/tfab107. eCollection 2021 Dec.
4
Natural Products with Activity against Lung Cancer: A Review Focusing on the Tumor Microenvironment.
Int J Mol Sci. 2021 Oct 7;22(19):10827. doi: 10.3390/ijms221910827.
5
Endothelial Cell Glucose Metabolism and Angiogenesis.
Biomedicines. 2021 Feb 3;9(2):147. doi: 10.3390/biomedicines9020147.
6
Beneficial Effects of Deoxyshikonin on Delayed Wound Healing in Diabetic Mice.
Int J Mol Sci. 2018 Nov 20;19(11):3660. doi: 10.3390/ijms19113660.
7
Shikonin sensitizes wild‑type EGFR NSCLC cells to erlotinib and gefitinib therapy.
Mol Med Rep. 2018 Oct;18(4):3882-3890. doi: 10.3892/mmr.2018.9347. Epub 2018 Aug 3.
8
The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis.
Pharmaceuticals (Basel). 2010 Mar 8;3(3):482-513. doi: 10.3390/ph3030482.
9
Biosynthesis and molecular actions of specialized 1,4-naphthoquinone natural products produced by horticultural plants.
Hortic Res. 2016 Sep 21;3:16046. doi: 10.1038/hortres.2016.46. eCollection 2016.
10
Pleiotropic effects of herbs characterized with blood-activating and stasis-resolving functions on angiogenesis.
Chin J Integr Med. 2016 Oct;22(10):795-800. doi: 10.1007/s11655-015-2405-x. Epub 2016 Jun 29.

本文引用的文献

2
Inhibition of tumor angiogenesis by targeting endothelial surface ATP synthase with sangivamycin.
Jpn J Clin Oncol. 2007 Nov;37(11):867-73. doi: 10.1093/jjco/hym115. Epub 2007 Oct 23.
3
Autocrine VEGF signaling is required for vascular homeostasis.
Cell. 2007 Aug 24;130(4):691-703. doi: 10.1016/j.cell.2007.06.054.
4
Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition.
Nat Rev Cancer. 2007 Jun;7(6):475-85. doi: 10.1038/nrc2152.
5
Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer.
Blood. 2007 Jun 15;109(12):5276-85. doi: 10.1182/blood-2006-10-053504. Epub 2007 Feb 27.
6
Angiopoietins in malignancy.
Eur J Surg Oncol. 2007 Feb;33(1):7-15. doi: 10.1016/j.ejso.2006.07.015. Epub 2006 Sep 7.
7
Angiogenesis as a therapeutic target.
Nature. 2005 Dec 15;438(7070):967-74. doi: 10.1038/nature04483.
8
Angiogenesis in life, disease and medicine.
Nature. 2005 Dec 15;438(7070):932-6. doi: 10.1038/nature04478.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验