Suppr超能文献

检测基因组数据中的微卫星:定义和生物信息学方法的差异导致系统偏差。

Detecting microsatellites in genome data: variance in definitions and bioinformatic approaches cause systematic bias.

机构信息

School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.

出版信息

Evol Bioinform Online. 2008 Feb 9;4:1-6. doi: 10.4137/ebo.s420.

Abstract

Microsatellites are currently one of the most commonly used genetic markers. The application of bioinformatic tools has become common practice in the study of these short tandem repeats (STR). However, in silico studies can suffer from study bias. Using a meta-analysis on microsatellite distribution in yeast we show that estimates of numbers of repeats reported by different studies can differ in the order of several magnitudes, even within a single genome. These differences arise because varying definitions of microsatellites, spanning repeat size, array length and array composition, are used in different search paradigms, with minimum array length being the main influencing factor. Structural differences in the implemented search algorithm additionally contribute to variation in the number of repeats detected. We suggest that for future studies a consistent approach to STR searches is adopted in order to improve the power of intra- and interspecific comparisons.

摘要

微卫星是目前最常用的遗传标记之一。生物信息学工具的应用已成为研究这些短串联重复序列(STR)的常见做法。然而,计算机模拟研究可能会受到研究偏差的影响。通过对酵母中微卫星分布的元分析,我们表明,即使在单个基因组中,不同研究报告的重复次数估计值也可能相差几个数量级,这是因为在不同的搜索模式中使用了不同的微卫星定义,包括重复大小、阵列长度和阵列组成,而最小的阵列长度是主要的影响因素。所采用的搜索算法的结构差异也会导致检测到的重复次数的变化。我们建议,为了提高种内和种间比较的能力,未来的研究应采用一致的 STR 搜索方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b4a/2614199/ac0aa5e55048/ebo-04-001-g01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验