Suppr超能文献

采用可生物降解水凝胶致孔剂制备的三维多孔可生物降解聚合物支架。

Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens.

机构信息

Tissue Engineering and Biomaterials Laboratory, Departments of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, MN 55905, USA.

出版信息

Tissue Eng Part C Methods. 2009 Dec;15(4):583-94. doi: 10.1089/ten.TEC.2008.0642.

Abstract

We have developed a new fabrication technique to create three-dimensional (3D) porous poly(epsilon-caprolactone fumarate) (PCLF) scaffolds using hydrogel microparticle porogens, as an alternative to overcome certain limitations of traditional scaffold fabrication techniques such as a salt leaching method. Both natural hydrogel, gelatin, and synthetic hydrogel, poly(ethylene glycol) sebacic acid diacrylate, were used as porogens to fabricate 3D porous PCLF scaffolds. Hydrogel microparticles were prepared by a single emulsion technique with the particle size in the range of 100-500 microm after equilibrium in water. The pore size distribution, porosity, pore interconnectivity, and spatial pore heterogeneity of the 3D PCLF scaffolds were assessed using micro-computed tomography and imaging analysis. Scaffolds fabricated with the hydrogel porogens had higher porosity and pore interconnectivity as well as more homogeneous spatial pore distribution, compared to the scaffolds made from the salt leaching process. Compressive moduli of the scaffolds were also measured and showed that lower porosity yielded greater modulus of the scaffolds. Overall, the new fabrication technology using hydrogel porogens may be beneficial for certain tissue engineering applications.

摘要

我们开发了一种新的制造技术,使用水凝胶微球致孔剂来制造三维(3D)多孔聚(己二酸-ε-己内酯)(PCLF)支架,以克服传统支架制造技术(如盐溶法)的某些局限性。天然水凝胶明胶和合成水凝胶聚(乙二醇)癸二酸二丙烯酸酯都被用作致孔剂来制造 3D 多孔 PCLF 支架。水凝胶微球是通过单乳液技术制备的,在水中达到平衡后粒径在 100-500μm 范围内。使用微计算机断层扫描和成像分析评估了 3D PCLF 支架的孔径分布、孔隙率、孔连通性和空间孔异质性。与盐溶法制造的支架相比,使用水凝胶致孔剂制造的支架具有更高的孔隙率和孔连通性,以及更均匀的空间孔分布。支架的压缩模量也进行了测量,结果表明较低的孔隙率会产生更大的支架模量。总的来说,使用水凝胶致孔剂的新技术可能有益于某些组织工程应用。

相似文献

1
Three-dimensional porous biodegradable polymeric scaffolds fabricated with biodegradable hydrogel porogens.
Tissue Eng Part C Methods. 2009 Dec;15(4):583-94. doi: 10.1089/ten.TEC.2008.0642.
3
Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications.
J Biomed Mater Res A. 2024 May;112(5):672-684. doi: 10.1002/jbm.a.37646. Epub 2023 Nov 16.
4
A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
J Biomater Sci Polym Ed. 2018 Nov;29(16):1978-1993. doi: 10.1080/09205063.2018.1498719. Epub 2018 Oct 30.
5
Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
J Mech Behav Biomed Mater. 2015 Aug;48:60-69. doi: 10.1016/j.jmbbm.2015.03.021. Epub 2015 Apr 2.
6
Porous poly(ε-caprolactone) scaffolds for load-bearing tissue regeneration: solventless fabrication and characterization.
J Biomed Mater Res B Appl Biomater. 2013 Aug;101(6):1050-60. doi: 10.1002/jbm.b.32915. Epub 2013 Apr 4.
7
A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering.
Acta Biomater. 2013 Mar;9(3):5630-42. doi: 10.1016/j.actbio.2012.10.032. Epub 2012 Nov 2.
9
Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
Biofabrication. 2010 Sep;2(3):035003. doi: 10.1088/1758-5082/2/3/035003. Epub 2010 Sep 8.
10
Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
Mater Sci Eng C Mater Biol Appl. 2012 Aug 1;32(6):1632-9. doi: 10.1016/j.msec.2012.04.054. Epub 2012 Apr 30.

引用本文的文献

1
An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells.
Int J Mol Sci. 2024 Mar 29;25(7):3836. doi: 10.3390/ijms25073836.
2
Biodegradable poly(caprolactone fumarate) 3D printed scaffolds for segmental bone defects within the Masquelet technique.
J Orthop Res. 2024 Sep;42(9):1974-1983. doi: 10.1002/jor.25839. Epub 2024 Mar 24.
3
Porous biomaterial scaffolds for skeletal muscle tissue engineering.
Front Bioeng Biotechnol. 2023 Oct 3;11:1245897. doi: 10.3389/fbioe.2023.1245897. eCollection 2023.
4
Hydrogel microparticles for biomedical applications.
Nat Rev Mater. 2020 Jan;5(1):20-43. doi: 10.1038/s41578-019-0148-6. Epub 2019 Nov 7.
5
Injectable, macroporous scaffolds for delivery of therapeutic genes to the injured spinal cord.
APL Bioeng. 2021 Mar 9;5(1):016104. doi: 10.1063/5.0035291. eCollection 2021 Mar.
7
Development of 3D-printed PLGA/TiO nanocomposite scaffolds for bone tissue engineering applications.
Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:105-113. doi: 10.1016/j.msec.2018.10.077. Epub 2018 Oct 23.
8
Decellularized scaffolds in regenerative medicine.
Oncotarget. 2016 Sep 6;7(36):58671-58683. doi: 10.18632/oncotarget.10945.
9
Sustained presentation of BMP-2 enhances osteogenic differentiation of human adipose-derived stem cells in gelatin hydrogels.
J Biomed Mater Res A. 2016 Jun;104(6):1387-97. doi: 10.1002/jbm.a.35668. Epub 2016 Feb 18.
10
Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering.
Biomaterials. 2016 Mar;83:1-11. doi: 10.1016/j.biomaterials.2015.12.026. Epub 2015 Dec 31.

本文引用的文献

2
Engineering complex tissues.
Tissue Eng. 2006 Dec;12(12):3307-39. doi: 10.1089/ten.2006.12.3307.
6
Porous scaffold design for tissue engineering.
Nat Mater. 2005 Jul;4(7):518-24. doi: 10.1038/nmat1421.
7
Porosity of 3D biomaterial scaffolds and osteogenesis.
Biomaterials. 2005 Sep;26(27):5474-91. doi: 10.1016/j.biomaterials.2005.02.002.
8
Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography.
J Biomed Mater Res A. 2004 Nov 1;71(2):258-67. doi: 10.1002/jbm.a.30138.
9
Biomaterials: where we have been and where we are going.
Annu Rev Biomed Eng. 2004;6:41-75. doi: 10.1146/annurev.bioeng.6.040803.140027.
10
Designing materials for biology and medicine.
Nature. 2004 Apr 1;428(6982):487-92. doi: 10.1038/nature02388.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验