Suppr超能文献

酿酒酵母着丝粒CDEIII序列的体内分析:有丝分裂染色体分离的要求

In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation.

作者信息

Jehn B, Niedenthal R, Hegemann J H

机构信息

Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany.

出版信息

Mol Cell Biol. 1991 Oct;11(10):5212-21. doi: 10.1128/mcb.11.10.5212-5221.1991.

Abstract

In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.

摘要

在酿酒酵母中,顺式作用所需的用于指定一个功能完整的有丝分裂和减数分裂着丝粒的全部信息,包含在由三个保守的着丝粒(CEN)DNA元件CDEI、-II和-III排列而成的120 bp序列中。25 bp的CDEIII对于准确的染色体分离最为重要。我们在该元件的所有高度保守残基以及一个非保守残基中构建了单碱基和双碱基替换,并使用人工染色体分析了突变的CEN DNA的体内有丝分裂功能。这些突变对染色体分离的影响在类似野生型活性(染色体丢失率为4.8×10⁻⁴)和完全丧失CEN功能之间变化。通过对回文核心序列进行饱和诱变获得的数据表明,回文半位点在有丝分裂CEN功能中存在不对称参与。某些单突变的CEN活性较差,可以通过引入另一个单突变来改善。这些第二位点抑制子可以在CDEIII的保守和非保守位置找到。我们根据在不同酵母染色体的CEN序列中发现的天然CDEIII序列变异来讨论我们的抑制数据。

相似文献

引用本文的文献

1
Splitting the yeast centromere by recombination.通过重组拆分酵母着丝粒。
Nucleic Acids Res. 2024 Jan 25;52(2):690-707. doi: 10.1093/nar/gkad1110.
6
Synergistic Control of Kinetochore Protein Levels by Psh1 and Ubr2.Psh1和Ubr2对动粒蛋白水平的协同控制
PLoS Genet. 2016 Feb 18;12(2):e1005855. doi: 10.1371/journal.pgen.1005855. eCollection 2016 Feb.
9
Mechanisms of chromosome number evolution in yeast.酵母染色体数目的进化机制。
PLoS Genet. 2011 Jul;7(7):e1002190. doi: 10.1371/journal.pgen.1002190. Epub 2011 Jul 21.
10

本文引用的文献

5
Yeast centromeres: structure and function.酵母着丝粒:结构与功能
Cell. 1984 Jun;37(2):351-3. doi: 10.1016/0092-8674(84)90363-5.
8
One-step gene disruption in yeast.酵母中的一步基因破坏
Methods Enzymol. 1983;101:202-11. doi: 10.1016/0076-6879(83)01015-0.
10
Protein-DNA recognition.蛋白质-脱氧核糖核酸识别
Annu Rev Biochem. 1984;53:293-321. doi: 10.1146/annurev.bi.53.070184.001453.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验