Dipartimento di Scienze Ambientali, Seconda Università di Napoli, via Vivaldi 43, 81100 Caserta, Italy.
Microb Cell Fact. 2009 Feb 16;8:14. doi: 10.1186/1475-2859-8-14.
Lactic acid bacteria of the genus Lactobacillus and Bifidobacterium are one of the most important health promoting groups of the human intestinal microbiota. Their protective role within the gut consists in out competing invading pathogens for ecological niches and metabolic substrates. Among the features necessary to provide health benefits, commensal microorganisms must have the ability to adhere to human intestinal cells and consequently to colonize the gut. Studies on mechanisms mediating adhesion of lactobacilli to human intestinal cells showed that factors involved in the interaction vary mostly among different species and strains, mainly regarding interaction between bacterial adhesins and extracellular matrix or mucus proteins. We have investigated the adhesive properties of Lactobacillus plantarum, a member of the human microbiota of healthy individuals.
We show the identification of a Lactobacillus plantarum LM3 cell surface protein (48 kDa), which specifically binds to human fibronectin (Fn), an extracellular matrix protein. By means of mass spectrometric analysis this protein was identified as the product of the L. plantarum enoA1 gene, coding the EnoA1 alfa-enolase. Surface localization of EnoA1 was proved by immune electron microscopy. In the mutant strain LM3-CC1, carrying the enoA1 null mutation, the 48 kDa adhesin was not anymore detectable neither by anti-enolase Western blot nor by Fn-overlay immunoblotting assay. Moreover, by an adhesion assay we show that LM3-CC1 cells bind to fibronectin-coated surfaces less efficiently than wild type cells, thus demonstrating the significance of the surface displaced EnoA1 protein for the L. plantarum LM3 adhesion to fibronectin.
Adhesion to host tissues represents a crucial early step in the colonization process of either pathogens or commensal bacteria. We demonstrated the involvement of the L. plantarum Eno A1 alfa-enolase in Fn-binding, by studying LM3 and LM3-CC1 surface proteins. Isolation of LM3-CC1 strain was possible for the presence of expressed enoA2 gene in the L. plantarum genome, giving the possibility, for the first time to our knowledge, to quantitatively compare adhesion of wild type and mutant strain, and to assess doubtless the role of L. plantarum Eno A1 as a fibronectin binding protein.
乳杆菌属和双歧杆菌属的乳酸菌是人类肠道微生物群中最重要的促进健康的群体之一。它们在肠道中的保护作用在于与入侵病原体竞争生态位和代谢底物。在提供健康益处所需的特征中,共生微生物必须具有粘附到人类肠道细胞的能力,从而定植肠道。关于乳杆菌粘附到人类肠道细胞的机制的研究表明,参与相互作用的因素在不同的物种和菌株之间差异很大,主要涉及细菌粘附素与细胞外基质或粘液蛋白之间的相互作用。我们研究了属于健康个体人类微生物群的植物乳杆菌的粘附特性。
我们鉴定出一种植物乳杆菌 LM3 细胞表面蛋白(48 kDa),该蛋白特异性结合人纤维连接蛋白(Fn),这是一种细胞外基质蛋白。通过质谱分析,该蛋白被鉴定为 L. plantarum enoA1 基因的产物,编码 EnoA1 alpha-烯醇酶。通过免疫电子显微镜证明了 EnoA1 的表面定位。在携带 enoA1 缺失突变的突变株 LM3-CC1 中,不再可以通过抗烯醇酶 Western blot 或 Fn 覆盖免疫印迹检测到 48 kDa 粘附素。此外,通过粘附试验,我们表明 LM3-CC1 细胞与纤维连接蛋白包被表面的粘附效率低于野生型细胞,从而证明了表面置换的 EnoA1 蛋白对 L. plantarum LM3 与纤维连接蛋白的粘附的重要性。
对宿主组织的粘附是病原体或共生细菌定植过程中的一个关键早期步骤。我们通过研究 LM3 和 LM3-CC1 表面蛋白,证明了植物乳杆菌 Eno A1 alpha-烯醇酶参与 Fn 结合。在 L. plantarum 基因组中存在表达的 enoA2 基因使得 LM3-CC1 菌株的分离成为可能,这使我们首次能够定量比较野生型和突变菌株的粘附,并无疑评估植物乳杆菌 Eno A1 作为纤维连接蛋白结合蛋白的作用。