Suppr超能文献

突变率的演变:光裂合酶/隐花色素家族的系统基因组分析

Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family.

作者信息

Lucas-Lledó José Ignacio, Lynch Michael

机构信息

Department of Biology, Indiana University, Bloomington, Indiana, USA.

出版信息

Mol Biol Evol. 2009 May;26(5):1143-53. doi: 10.1093/molbev/msp029. Epub 2009 Feb 19.

Abstract

Photoreactivation, one of the first DNA repair pathways to evolve, is the direct reversal of premutagenic lesions caused by ultraviolet (UV) irradiation, catalyzed by photolyases in a light-dependent, single-enzyme reaction. It has been experimentally shown that photoreactivation prevents UV mutagenesis in a broad range of species. In the absence of photoreactivation, UV-induced photolesions are repaired by the more complex and much less efficient nucleotide excision repair pathway. Despite their obvious beneficial effects, several lineages, including placental mammals, lost photolyase genes during evolution. In this study, we ask why photolyase genes have been lost in those lineages and discuss the significance of these losses in the context of the evolution of the genomic mutation rates. We first perform an extensive phylogenomic analysis of the photolyase/cryptochrome family, to assess what species lack each kind of photolyase gene. Then, we estimate the ratio of nonsynonymous to synonymous substitution rates in several groups of photolyase genes, as a proxy of the strength of purifying natural selection, and we ask whether less evolutionarily constrained photolyase genes are more likely lost. We also review functional data and compare the efficiency of different kinds of photolyases. We find that eukaryotic photolyases are, on average, less evolutionarily constrained than eubacterial ones and that the strength of natural selection is correlated with the affinity of photolyases for their substrates. We propose that the loss of photolyase genes in eukaryotic species may be due to weak natural selection and may result in a deleterious increase of their genomic mutation rates. In contrast, the loss of photolyase genes in prokaryotes may not cause an increase in the mutation rate and be neutral in most cases.

摘要

光复活作用是最早进化出来的DNA修复途径之一,它能直接逆转由紫外线(UV)照射引起的前诱变损伤,在光依赖的单酶反应中由光解酶催化。实验表明,光复活作用能防止多种物种发生UV诱变。在没有光复活作用的情况下,UV诱导的光损伤由更复杂且效率低得多的核苷酸切除修复途径来修复。尽管光复活作用有明显的有益效果,但包括胎盘哺乳动物在内的几个谱系在进化过程中失去了光解酶基因。在本研究中,我们探究了这些谱系中光解酶基因丢失的原因,并在基因组突变率进化的背景下讨论了这些基因丢失的意义。我们首先对光解酶/隐花色素家族进行了广泛的系统基因组分析,以评估哪些物种缺乏每种光解酶基因。然后,我们估计了几组光解酶基因中非同义替换率与同义替换率的比值,以此作为纯化自然选择强度的指标,并探究进化限制较少的光解酶基因是否更有可能丢失。我们还回顾了功能数据并比较了不同种类光解酶的效率。我们发现,真核生物的光解酶平均而言比原核生物的进化限制更少,并且自然选择的强度与光解酶对其底物的亲和力相关。我们提出,真核生物物种中光解酶基因的丢失可能是由于自然选择较弱,并且可能导致其基因组突变率有害增加。相比之下,原核生物中光解酶基因的丢失可能不会导致突变率增加,并且在大多数情况下是中性的。

相似文献

1
Evolution of mutation rates: phylogenomic analysis of the photolyase/cryptochrome family.
Mol Biol Evol. 2009 May;26(5):1143-53. doi: 10.1093/molbev/msp029. Epub 2009 Feb 19.
2
A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17696-700. doi: 10.1073/pnas.0607993103. Epub 2006 Oct 24.
3
4
The DASH-type Cryptochrome from the Fungus Mucor circinelloides Is a Canonical CPD-Photolyase.
Curr Biol. 2020 Nov 16;30(22):4483-4490.e4. doi: 10.1016/j.cub.2020.08.051. Epub 2020 Sep 17.
5
A photolyase-like protein from Agrobacterium tumefaciens with an iron-sulfur cluster.
PLoS One. 2011;6(10):e26775. doi: 10.1371/journal.pone.0026775. Epub 2011 Oct 31.
6
Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes.
PLoS One. 2015 Sep 9;10(9):e0135940. doi: 10.1371/journal.pone.0135940. eCollection 2015.
7
Rhodobacter sphaeroides CryB is a bacterial cryptochrome with (6-4) photolyase activity.
FEBS J. 2016 Dec;283(23):4291-4309. doi: 10.1111/febs.13924. Epub 2016 Nov 10.
8
Purification and characterization of five members of photolyase/cryptochrome family from Cyanidioschyzon merolae.
Plant Sci. 2012 Apr;185-186:190-8. doi: 10.1016/j.plantsci.2011.10.005. Epub 2011 Oct 14.
9
Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction.
Eukaryot Cell. 2007 Sep;6(9):1682-92. doi: 10.1128/EC.00208-06. Epub 2007 Jun 1.
10
Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms.
J Plant Physiol. 2015 Jan 1;172:42-54. doi: 10.1016/j.jplph.2014.06.011. Epub 2014 Jul 7.

引用本文的文献

1
Conservation of dark CPD photolyase function in blind cavefish.
Nat Commun. 2025 Aug 11;16(1):7377. doi: 10.1038/s41467-025-62795-7.
2
Understanding Active Photoprotection: DNA-Repair Enzymes and Antioxidants.
Life (Basel). 2024 Jun 28;14(7):822. doi: 10.3390/life14070822.
3
4
Mitochondrial Kinase Signaling for Cardioprotection.
Int J Mol Sci. 2024 Apr 19;25(8):4491. doi: 10.3390/ijms25084491.
5
UV damage induces production of mitochondrial DNA fragments with specific length profiles.
bioRxiv. 2023 Nov 11:2023.11.07.566130. doi: 10.1101/2023.11.07.566130.
6
CrusTome: a transcriptome database resource for large-scale analyses across Crustacea.
G3 (Bethesda). 2023 Jul 5;13(7). doi: 10.1093/g3journal/jkad098.
7
Roles of DNA damage in renal tubular epithelial cells injury.
Front Physiol. 2023 Apr 6;14:1162546. doi: 10.3389/fphys.2023.1162546. eCollection 2023.
9
Photolyase Production and Current Applications: A Review.
Molecules. 2022 Sep 15;27(18):5998. doi: 10.3390/molecules27185998.
10
The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution.
Genes (Basel). 2022 Sep 8;13(9):1613. doi: 10.3390/genes13091613.

本文引用的文献

1
MUTATION MODIFICATION IN A RANDOM ENVIRONMENT.
Evolution. 1981 May;35(3):468-476. doi: 10.1111/j.1558-5646.1981.tb04910.x.
2
The cellular, developmental and population-genetic determinants of mutation-rate evolution.
Genetics. 2008 Oct;180(2):933-43. doi: 10.1534/genetics.108.090456. Epub 2008 Aug 30.
3
Structure and function of animal cryptochromes.
Cold Spring Harb Symp Quant Biol. 2007;72:119-31. doi: 10.1101/sqb.2007.72.015.
4
Coevolution with viruses drives the evolution of bacterial mutation rates.
Nature. 2007 Dec 13;450(7172):1079-81. doi: 10.1038/nature06350. Epub 2007 Dec 2.
5
Role of hypermutability in the evolution of the genus Oenococcus.
J Bacteriol. 2008 Jan;190(2):564-70. doi: 10.1128/JB.01457-07. Epub 2007 Nov 9.
6
DNA repair capacity of zebrafish.
Proc Natl Acad Sci U S A. 2007 Aug 14;104(33):13379-83. doi: 10.1073/pnas.0706157104. Epub 2007 Aug 8.
7
Mutation rate variation in multicellular eukaryotes: causes and consequences.
Nat Rev Genet. 2007 Aug;8(8):619-31. doi: 10.1038/nrg2158.
8
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Mol Biol Evol. 2007 Aug;24(8):1596-9. doi: 10.1093/molbev/msm092. Epub 2007 May 7.
9
PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 2007 Aug;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub 2007 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验