Pratx Guillem, Chinn Garry, Olcott Peter D, Levin Craig S
Department of Radiology, Molecular Imaging Program, Stanford University, Stanford, CA 94305, USA.
IEEE Trans Med Imaging. 2009 Mar;28(3):435-45. doi: 10.1109/TMI.2008.2006518.
List-mode processing provides an efficient way to deal with sparse projections in iterative image reconstruction for emission tomography. An issue often reported is the tremendous amount of computation required by such algorithm. Each recorded event requires several back- and forward line projections. We investigated the use of the programmable graphics processing unit (GPU) to accelerate the line-projection operations and implement fully-3D list-mode ordered-subsets expectation-maximization for positron emission tomography (PET). We designed a reconstruction approach that incorporates resolution kernels, which model the spatially-varying physical processes associated with photon emission, transport and detection. Our development is particularly suitable for applications where the projection data is sparse, such as high-resolution, dynamic, and time-of-flight PET reconstruction. The GPU approach runs more than 50 times faster than an equivalent CPU implementation while image quality and accuracy are virtually identical. This paper describes in details how the GPU can be used to accelerate the line projection operations, even when the lines-of-response have arbitrary endpoint locations and shift-varying resolution kernels are used. A quantitative evaluation is included to validate the correctness of this new approach.
列表模式处理为发射断层扫描的迭代图像重建中处理稀疏投影提供了一种有效方法。经常报道的一个问题是这种算法需要大量的计算。每个记录事件都需要进行几次前后线投影。我们研究了使用可编程图形处理单元(GPU)来加速线投影操作,并实现用于正电子发射断层扫描(PET)的全三维列表模式有序子集期望最大化。我们设计了一种结合分辨率核的重建方法,该分辨率核模拟了与光子发射、传输和检测相关的空间变化物理过程。我们的开发特别适用于投影数据稀疏的应用,如高分辨率、动态和飞行时间PET重建。GPU方法的运行速度比同等的CPU实现快50倍以上,而图像质量和准确性几乎相同。本文详细描述了如何使用GPU加速线投影操作,即使响应线具有任意端点位置且使用了移位变化的分辨率核。还包括定量评估以验证这种新方法的正确性。