Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA.
Phys Med Biol. 2011 Jul 7;56(13):4023-40. doi: 10.1088/0031-9155/56/13/018. Epub 2011 Jun 15.
Positron emission tomography systems are best described by a linear shift-varying model. However, image reconstruction often assumes simplified shift-invariant models to the detriment of image quality and quantitative accuracy. We investigated a shift-varying model of the geometrical system response based on an analytical formulation. The model was incorporated within a list-mode, fully 3D iterative reconstruction process in which the system response coefficients are calculated online on a graphics processing unit (GPU). The implementation requires less than 512 Mb of GPU memory and can process two million events per minute (forward and backprojection). For small detector volume elements, the analytical model compared well to reference calculations. Images reconstructed with the shift-varying model achieved higher quality and quantitative accuracy than those that used a simpler shift-invariant model. For an 8 mm sphere in a warm background, the contrast recovery was 95.8% for the shift-varying model versus 85.9% for the shift-invariant model. In addition, the spatial resolution was more uniform across the field-of-view: for an array of 1.75 mm hot spheres in air, the variation in reconstructed sphere size was 0.5 mm RMS for the shift-invariant model, compared to 0.07 mm RMS for the shift-varying model.
正电子发射断层成像系统最好用线性时变移位模型来描述。然而,图像重建通常采用简化的时不变模型,这会影响图像质量和定量准确性。我们研究了一种基于解析公式的几何系统响应时变模型。该模型被纳入到一种列表模式、完全 3D 迭代重建过程中,其中系统响应系数在图形处理单元(GPU)上在线计算。该实现方法需要的 GPU 内存少于 512 Mb,并且可以每分钟处理 200 万次事件(正向和反向投影)。对于小的探测器体积元素,解析模型与参考计算结果吻合良好。使用时变移位模型重建的图像比使用更简单的时不变模型的图像具有更高的质量和定量准确性。对于一个温暖背景下 8 毫米的球体,时变移位模型的对比度恢复为 95.8%,而时不变移位模型为 85.9%。此外,在视场范围内,空间分辨率更加均匀:对于空气中 1.75 毫米热球体的阵列,时不变移位模型的重建球体尺寸变化为 0.5 毫米 RMS,而时变移位模型的变化为 0.07 毫米 RMS。