Suppr超能文献

转化生长因子β信号通路的定量建模与分析

Quantitative modeling and analysis of the transforming growth factor beta signaling pathway.

作者信息

Chung Seung-Wook, Miles Fayth L, Sikes Robert A, Cooper Carlton R, Farach-Carson Mary C, Ogunnaike Babatunde A

机构信息

Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA

出版信息

Biophys J. 2009 Mar 4;96(5):1733-50. doi: 10.1016/j.bpj.2008.11.050.

Abstract

Transforming growth factor beta (TGF-beta) signaling, which regulates multiple cellular processes including proliferation, apoptosis, and differentiation, plays an important but incompletely understood role in normal and cancerous tissues. For instance, although TGF-beta functions as a tumor suppressor in the premalignant stages of tumorigenesis, paradoxically, it also seems to act as a tumor promoter in advanced cancer leading to metastasis. The mechanisms by which TGF-beta elicits such diverse responses during cancer progression are still not entirely clear. As a first step toward understanding TGF-beta signaling quantitatively, we have developed a comprehensive, dynamic model of the canonical TGF-beta pathway via Smad transcription factors. By describing how an extracellular signal of the TGF-beta ligand is sensed by receptors and transmitted into the nucleus through intracellular Smad proteins, the model provides quantitative insight into how TGF-beta-induced responses are modulated and regulated. Subsequent model analysis shows that mechanisms associated with Smad activation by ligand-activated receptor, nuclear complex formation among Smad proteins, and inactivation of ligand-activated Smad (e.g., degradation, dephosphorylation) may be critical for regulating TGF-beta-targeted functional responses. The model was also used to predict dynamic characteristics of the Smad-mediated pathway in abnormal cells, from which we generated four testable hypotheses regarding potential mechanisms by which TGF-beta's tumor-suppressive roles may appear to morph into tumor-promotion during cancer progression.

摘要

转化生长因子β(TGF-β)信号传导可调节包括增殖、凋亡和分化在内的多种细胞过程,在正常组织和癌组织中发挥着重要但尚未完全了解的作用。例如,尽管TGF-β在肿瘤发生的癌前阶段起着肿瘤抑制作用,但矛盾的是,它在导致转移的晚期癌症中似乎也起着肿瘤促进作用。TGF-β在癌症进展过程中引发如此多样反应的机制仍不完全清楚。作为定量理解TGF-β信号传导的第一步,我们通过Smad转录因子建立了一个全面的、动态的经典TGF-β信号通路模型。通过描述TGF-β配体的细胞外信号如何被受体感知并通过细胞内Smad蛋白传递到细胞核,该模型为TGF-β诱导的反应如何被调节和调控提供了定量的见解。随后的模型分析表明,与配体激活受体激活Smad、Smad蛋白之间形成核复合物以及配体激活的Smad失活(如降解、去磷酸化)相关的机制可能对调节TGF-β靶向的功能反应至关重要。该模型还用于预测异常细胞中Smad介导的信号通路的动态特征,从中我们提出了四个可测试的假设,涉及TGF-β的肿瘤抑制作用在癌症进展过程中可能转变为肿瘤促进作用的潜在机制。

相似文献

1
Quantitative modeling and analysis of the transforming growth factor beta signaling pathway.
Biophys J. 2009 Mar 4;96(5):1733-50. doi: 10.1016/j.bpj.2008.11.050.
2
Feedback regulation of TGF-β signaling.
Acta Biochim Biophys Sin (Shanghai). 2018 Jan 1;50(1):37-50. doi: 10.1093/abbs/gmx129.
3
Decoding the quantitative nature of TGF-beta/Smad signaling.
Trends Cell Biol. 2008 Sep;18(9):430-42. doi: 10.1016/j.tcb.2008.06.006. Epub 2008 Aug 15.
4
TGF-β Signaling in Cancer.
J Cell Biochem. 2016 Jun;117(6):1279-87. doi: 10.1002/jcb.25496. Epub 2016 Feb 11.
5
Lefty inhibits receptor-regulated Smad phosphorylation induced by the activated transforming growth factor-beta receptor.
J Biol Chem. 2001 Jun 15;276(24):21397-404. doi: 10.1074/jbc.M010783200. Epub 2001 Feb 20.
7
Cooperation of H2O2-mediated ERK activation with Smad pathway in TGF-beta1 induction of p21WAF1/Cip1.
Cell Signal. 2006 Feb;18(2):236-43. doi: 10.1016/j.cellsig.2005.04.008. Epub 2005 Jun 24.
8
Regulation of transforming growth factor-beta signaling.
Mol Cell Biol Res Commun. 2001 Nov;4(6):321-30. doi: 10.1006/mcbr.2001.0301.
9
Mechanisms of TGF-beta signaling from cell membrane to the nucleus.
Cell. 2003 Jun 13;113(6):685-700. doi: 10.1016/s0092-8674(03)00432-x.
10
Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.
Gastroenterology. 2017 Nov;153(5):1378-1391.e6. doi: 10.1053/j.gastro.2017.07.014. Epub 2017 Jul 20.

引用本文的文献

1
Optimal performance objectives in the highly conserved bone morphogenetic protein signaling pathway.
NPJ Syst Biol Appl. 2024 Sep 14;10(1):103. doi: 10.1038/s41540-024-00430-9.
2
Modeling Cellular Signaling Variability Based on Single-Cell Data: The TGFβ-SMAD Signaling Pathway.
Methods Mol Biol. 2023;2634:215-251. doi: 10.1007/978-1-0716-3008-2_10.
3
Computational modeling of TGF-β2:TβRI:TβRII receptor complex assembly as mediated by the TGF-β coreceptor betaglycan.
Biophys J. 2023 Apr 4;122(7):1342-1354. doi: 10.1016/j.bpj.2023.02.030. Epub 2023 Mar 3.
4
A novel strategy for dynamic modeling of genome-scale interaction networks.
Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btad079.
5
Data-based stochastic modeling reveals sources of activity bursts in single-cell TGF-β signaling.
PLoS Comput Biol. 2022 Jun 27;18(6):e1010266. doi: 10.1371/journal.pcbi.1010266. eCollection 2022 Jun.
6
Deciphering Epithelial-Mesenchymal Transition Regulatory Networks in Cancer through Computational Approaches.
Front Oncol. 2017 Aug 3;7:162. doi: 10.3389/fonc.2017.00162. eCollection 2017.
7
Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching.
BMC Syst Biol. 2017 Apr 13;11(1):48. doi: 10.1186/s12918-017-0421-5.
8
Population Heterogeneity in the Epithelial to Mesenchymal Transition Is Controlled by NFAT and Phosphorylated Sp1.
PLoS Comput Biol. 2016 Dec 27;12(12):e1005251. doi: 10.1371/journal.pcbi.1005251. eCollection 2016 Dec.
9
Semi-adaptive response and noise attenuation in bone morphogenetic protein signalling.
J R Soc Interface. 2015 Jun 6;12(107). doi: 10.1098/rsif.2015.0258.
10
The self-limiting dynamics of TGF-β signaling in silico and in vitro, with negative feedback through PPM1A upregulation.
PLoS Comput Biol. 2014 Jun 5;10(6):e1003573. doi: 10.1371/journal.pcbi.1003573. eCollection 2014 Jun.

本文引用的文献

1
Effects of chronic hyperinsulinemia in insulin-resistant patients.
Curr Diab Rep. 2008 Jun;8(3):233-8. doi: 10.1007/s11892-008-0040-z.
2
Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6608-13. doi: 10.1073/pnas.0710134105. Epub 2008 Apr 28.
3
Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses.
Mol Syst Biol. 2007;3:144. doi: 10.1038/msb4100188. Epub 2007 Nov 13.
4
TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility.
Nat Rev Mol Cell Biol. 2007 Dec;8(12):970-82. doi: 10.1038/nrm2297.
5
Constraint-based modeling and kinetic analysis of the Smad dependent TGF-beta signaling pathway.
PLoS One. 2007 Sep 26;2(9):e936. doi: 10.1371/journal.pone.0000936.
8
Systems theory of Smad signalling.
Syst Biol (Stevenage). 2006 Nov;153(6):412-24. doi: 10.1049/ip-syb:20050055.
9
A rate equation approach to elucidate the kinetics and robustness of the TGF-beta pathway.
Biophys J. 2006 Dec 15;91(12):4368-80. doi: 10.1529/biophysj.105.080408. Epub 2006 Sep 29.
10
Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer.
Biochim Biophys Acta. 2007 Jan;1775(1):21-62. doi: 10.1016/j.bbcan.2006.06.004. Epub 2006 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验