Shi Wendong, Wang Jizeng, Fan Xiaojun, Gao Huajian
Department of Engineering, Brown University, Providence, Rhode Island 02912, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061914. doi: 10.1103/PhysRevE.78.061914. Epub 2008 Dec 16.
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.
最近开发了一种力学模型,用于描述具有扩散性移动受体的细胞膜如何包裹在配体包被的圆柱形或球形颗粒周围,以模拟颗粒大小在受体介导的内吞作用中的作用。结果表明,即使在没有网格蛋白或小窝蛋白包被的情况下,几十到几百纳米大小范围内的颗粒也能进入细胞。在此,我们报告在模拟有限大小的胶体颗粒在部分吸收球体附近的扩散、相互作用和吸收过程中,颗粒大小和形状影响方面取得的进一步进展。我们的分析表明,从扩散和相互作用的角度来看,存在一个最佳的流体动力学颗粒大小,通常处于纳米量级,以实现颗粒吸收的最大速率。这种最佳大小是颗粒的扩散常数与颗粒和吸收球体之间相对于热能的相互作用能之间平衡的结果。流体动力学半径较小的颗粒具有较大的扩散常数,但与球体的相互作用较弱,而较大的颗粒具有较小的扩散常数,但与球体的相互作用较强。由于流体动力学半径也由颗粒形状决定,因此最佳流体动力学半径意味着非球形颗粒的最佳大小以及最佳纵横比。这些结果与实验观察结果广泛一致,可能对纳米颗粒与动物细胞之间的相互作用具有普遍意义。