Gartner Zev J, Bertozzi Carolyn R
Department of Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4606-10. doi: 10.1073/pnas.0900717106. Epub 2009 Mar 9.
Multicellular organs comprise differentiated cell types with discrete yet interdependent functions. The cells' spatial arrangements and interconnectivities, both critical elements of higher-order function, derive from complex developmental programs in vivo and are often difficult or impossible to emulate in vitro. Here, we report the bottom-up synthesis of microtissues composed of multiple cell types with programmed connectivity. We functionalized cells with short oligonucleotides to impart specific adhesive properties. Hybridization of complementary DNA sequences enabled the assembly of multicellular structures with defined cell-cell contacts. We demonstrated that the kinetic parameters of the assembly process depend on DNA sequence complexity, density, and total cell concentration. Thus, cell assembly can be highly controlled, enabling the design of microtissues with defined cell composition and stoichiometry. We used this strategy to construct a paracrine signaling network in isolated 3-dimensional microtissues.
多细胞器官由具有离散但相互依赖功能的分化细胞类型组成。细胞的空间排列和相互连接性是高阶功能的两个关键要素,它们源自体内复杂的发育程序,在体外往往难以或无法模拟。在此,我们报告了由具有程序化连接性的多种细胞类型组成的微组织的自下而上合成。我们用短寡核苷酸对细胞进行功能化,以赋予其特定的粘附特性。互补DNA序列的杂交使得具有确定细胞 - 细胞接触的多细胞结构得以组装。我们证明,组装过程的动力学参数取决于DNA序列复杂性、密度和总细胞浓度。因此,细胞组装可以得到高度控制,从而能够设计具有确定细胞组成和化学计量的微组织。我们使用这种策略在分离的三维微组织中构建了一个旁分泌信号网络。