Munuera Jérôme, Morel Pierre, Duhamel Jean-René, Deneve Sophie
Centre de Neuroscience Cognitive, CNRS-Université de Lyon (UMR5229), 69675 Bron, France.
J Neurosci. 2009 Mar 11;29(10):3026-35. doi: 10.1523/JNEUROSCI.1169-08.2009.
Fast and accurate motor behavior requires combining noisy and delayed sensory information with knowledge of self-generated body motion; much evidence indicates that humans do this in a near-optimal manner during arm movements. However, it is unclear whether this principle applies to eye movements. We measured the relative contributions of visual sensory feedback and the motor efference copy (and/or proprioceptive feedback) when humans perform two saccades in rapid succession, the first saccade to a visual target and the second to a memorized target. Unbeknownst to the subject, we introduced an artificial motor error by randomly "jumping" the visual target during the first saccade. The correction of the memory-guided saccade allowed us to measure the relative contributions of visual feedback and efferent copy (and/or proprioceptive feedback) to motor-plan updating. In a control experiment, we extinguished the target during the saccade rather than changing its location to measure the relative contribution of motor noise and target localization error to saccade variability without any visual feedback. The motor noise contribution increased with saccade amplitude, but remained <30% of the total variability. Subjects adjusted the gain of their visual feedback for different saccade amplitudes as a function of its reliability. Even during trials where subjects performed a corrective saccade to compensate for the target-jump, the correction by the visual feedback, while stronger, remained far below 100%. In all conditions, an optimal controller predicted the visual feedback gain well, suggesting that humans combine optimally their efferent copy and sensory feedback when performing eye movements.
快速而准确的运动行为需要将有噪声和延迟的感觉信息与自身产生的身体运动知识相结合;大量证据表明,人类在手臂运动过程中以近乎最优的方式做到了这一点。然而,尚不清楚这一原理是否适用于眼球运动。我们测量了人类连续快速进行两次扫视时视觉感觉反馈和运动传出副本(和/或本体感觉反馈)的相对贡献,第一次扫视到视觉目标,第二次扫视到记忆中的目标。在受试者不知情的情况下,我们通过在第一次扫视期间随机“跳跃”视觉目标引入了人为的运动误差。对记忆引导扫视的校正使我们能够测量视觉反馈和传出副本(和/或本体感觉反馈)对运动计划更新的相对贡献。在一个对照实验中,我们在扫视期间熄灭目标而不是改变其位置,以测量在没有任何视觉反馈的情况下运动噪声和目标定位误差对扫视变异性的相对贡献。运动噪声贡献随着扫视幅度的增加而增加,但仍占总变异性的不到30%。受试者根据视觉反馈的可靠性针对不同的扫视幅度调整其增益。即使在受试者进行校正扫视以补偿目标跳跃的试验中,视觉反馈的校正虽然更强,但仍远低于100%。在所有条件下,最优控制器都能很好地预测视觉反馈增益,这表明人类在进行眼球运动时能最优地结合其传出副本和感觉反馈。