Suppr超能文献

循环皮质网络中的最佳感觉运动整合:卡尔曼滤波器的神经实现

Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters.

作者信息

Denève Sophie, Duhamel Jean-René, Pouget Alexandre

机构信息

Group for Neural Theory, Département d'Etude Cognitives, Ecole Normale Supérieure, Collège de France, Centre National de la Recherche Scientifique, 75005 Paris, France.

出版信息

J Neurosci. 2007 May 23;27(21):5744-56. doi: 10.1523/JNEUROSCI.3985-06.2007.

Abstract

Several behavioral experiments suggest that the nervous system uses an internal model of the dynamics of the body to implement a close approximation to a Kalman filter. This filter can be used to perform a variety of tasks nearly optimally, such as predicting the sensory consequence of motor action, integrating sensory and body posture signals, and computing motor commands. We propose that the neural implementation of this Kalman filter involves recurrent basis function networks with attractor dynamics, a kind of architecture that can be readily mapped onto cortical circuits. In such networks, the tuning curves to variables such as arm velocity are remarkably noninvariant in the sense that the amplitude and width of the tuning curves of a given neuron can vary greatly depending on other variables such as the position of the arm or the reliability of the sensory feedback. This property could explain some puzzling properties of tuning curves in the motor and premotor cortex, and it leads to several new predictions.

摘要

多项行为实验表明,神经系统利用身体动力学的内部模型来实现与卡尔曼滤波器的近似。该滤波器可用于近乎最优地执行各种任务,如预测运动动作的感觉后果、整合感觉和身体姿势信号以及计算运动指令。我们提出,这种卡尔曼滤波器的神经实现涉及具有吸引子动力学的循环基函数网络,这是一种可以很容易地映射到皮层回路的架构。在这样的网络中,对于诸如手臂速度等变量的调谐曲线在某种意义上是非常非不变的,即给定神经元的调谐曲线的幅度和宽度会根据其他变量(如手臂的位置或感觉反馈的可靠性)而有很大变化。这一特性可以解释运动皮层和运动前区皮层中调谐曲线的一些令人困惑的特性,并导致一些新的预测。

相似文献

3
Sensory processing and categorization in cortical and deep neural networks.皮层和深层神经网络中的感觉处理和分类。
Neuroimage. 2019 Nov 15;202:116118. doi: 10.1016/j.neuroimage.2019.116118. Epub 2019 Aug 21.
4
Neural network learning of optimal Kalman prediction and control.最优卡尔曼预测与控制的神经网络学习
Neural Netw. 2008 Nov;21(9):1328-43. doi: 10.1016/j.neunet.2008.05.002. Epub 2008 May 27.
7
Computing and stability in cortical networks.皮层网络中的计算与稳定性
Neural Comput. 2004 Jul;16(7):1385-412. doi: 10.1162/089976604323057434.
8
Neural network models of cortical functions based on the computational properties of the cerebral cortex.
J Physiol Paris. 1994;88(5):291-308. doi: 10.1016/0928-4257(94)90010-8.
10
Neural Representation and Causal Models in Motor Cortex.运动皮层中的神经表征与因果模型
J Neurosci. 2017 Mar 22;37(12):3413-3424. doi: 10.1523/JNEUROSCI.1000-16.2017. Epub 2017 Feb 20.

引用本文的文献

2
Predictive coding networks for temporal prediction.用于时间预测的预测编码网络。
PLoS Comput Biol. 2024 Apr 1;20(4):e1011183. doi: 10.1371/journal.pcbi.1011183. eCollection 2024 Apr.
5
Motor-related signals support localization invariance for stable visual perception.运动相关信号支持稳定视觉感知的定位不变性。
PLoS Comput Biol. 2022 Mar 14;18(3):e1009928. doi: 10.1371/journal.pcbi.1009928. eCollection 2022 Mar.
6
Capturing the objects of vision with neural networks.用神经网络捕捉视觉对象。
Nat Hum Behav. 2021 Sep;5(9):1127-1144. doi: 10.1038/s41562-021-01194-6. Epub 2021 Sep 20.
8
Experience-dependent contextual codes in the hippocampus.海马体中的经验依赖型上下文代码。
Nat Neurosci. 2021 May;24(5):705-714. doi: 10.1038/s41593-021-00816-6. Epub 2021 Mar 22.

本文引用的文献

2
Bayesian inference with probabilistic population codes.基于概率群体编码的贝叶斯推理。
Nat Neurosci. 2006 Nov;9(11):1432-8. doi: 10.1038/nn1790. Epub 2006 Oct 22.
6
Optimal computation with attractor networks.具有吸引子网络的最优计算。
J Physiol Paris. 2003 Jul-Nov;97(4-6):683-94. doi: 10.1016/j.jphysparis.2004.01.022.
8
Bayesian computation in recurrent neural circuits.循环神经回路中的贝叶斯计算
Neural Comput. 2004 Jan;16(1):1-38. doi: 10.1162/08997660460733976.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验