Denève Sophie, Duhamel Jean-René, Pouget Alexandre
Group for Neural Theory, Département d'Etude Cognitives, Ecole Normale Supérieure, Collège de France, Centre National de la Recherche Scientifique, 75005 Paris, France.
J Neurosci. 2007 May 23;27(21):5744-56. doi: 10.1523/JNEUROSCI.3985-06.2007.
Several behavioral experiments suggest that the nervous system uses an internal model of the dynamics of the body to implement a close approximation to a Kalman filter. This filter can be used to perform a variety of tasks nearly optimally, such as predicting the sensory consequence of motor action, integrating sensory and body posture signals, and computing motor commands. We propose that the neural implementation of this Kalman filter involves recurrent basis function networks with attractor dynamics, a kind of architecture that can be readily mapped onto cortical circuits. In such networks, the tuning curves to variables such as arm velocity are remarkably noninvariant in the sense that the amplitude and width of the tuning curves of a given neuron can vary greatly depending on other variables such as the position of the arm or the reliability of the sensory feedback. This property could explain some puzzling properties of tuning curves in the motor and premotor cortex, and it leads to several new predictions.
多项行为实验表明,神经系统利用身体动力学的内部模型来实现与卡尔曼滤波器的近似。该滤波器可用于近乎最优地执行各种任务,如预测运动动作的感觉后果、整合感觉和身体姿势信号以及计算运动指令。我们提出,这种卡尔曼滤波器的神经实现涉及具有吸引子动力学的循环基函数网络,这是一种可以很容易地映射到皮层回路的架构。在这样的网络中,对于诸如手臂速度等变量的调谐曲线在某种意义上是非常非不变的,即给定神经元的调谐曲线的幅度和宽度会根据其他变量(如手臂的位置或感觉反馈的可靠性)而有很大变化。这一特性可以解释运动皮层和运动前区皮层中调谐曲线的一些令人困惑的特性,并导致一些新的预测。