Suppr超能文献

用于生物医学血氧测定的聚合物封装顺磁探针的制备与物理评估。

Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry.

作者信息

Meenakshisundaram Guruguhan, Eteshola Edward, Pandian Ramasamy P, Bratasz Anna, Lee Stephen C, Kuppusamy Periannan

机构信息

Center for Biomedical EPR Spectroscopy and Imaging, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Biomed Microdevices. 2009 Aug;11(4):773-82. doi: 10.1007/s10544-009-9292-x.

Abstract

Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) is a promising probe for biological electron paramagnetic resonance (EPR) oximetry and is being developed for clinical use. However, clinical applicability of LiNc-BuO may be hindered by potential limitations associated with biocompatibility, biodegradation, and migration of individual crystals in tissue. To overcome these limitations, we have encapsulated LiNc-BuO crystals in polydimethyl siloxane (PDMS), an oxygen-permeable and bioinert polymer, to fabricate conveniently implantable and retrievable oxygen-sensing chips. Encapsulation was performed by a simple cast-molding process, giving appreciable control over size, shape, thickness and spin density of chips. The in vitro oxygen response of the chip was linear, reproducible, and not significantly different from that of unencapsulated crystals. Cast-molding of the structurally-flexible PDMS enabled the fabrication of chips with tailored spin densities, and ensured non-exposure of embedded LiNc-BuO, mitigating potential biocompatibility/toxicological concerns. Our results establish PDMS-encapsulated LiNc-BuO as a promising candidate for further biological evaluation and potential clinical application.

摘要

八正丁氧基萘酞菁锂(LiNc-BuO)是一种用于生物电子顺磁共振(EPR)血氧测定的有前景的探针,目前正在开发用于临床。然而,LiNc-BuO的临床适用性可能会受到与生物相容性、生物降解以及组织中单个晶体迁移相关的潜在限制的阻碍。为了克服这些限制,我们将LiNc-BuO晶体封装在聚二甲基硅氧烷(PDMS)中,这是一种透气且生物惰性的聚合物,以制造便于植入和取出的氧传感芯片。封装通过简单的铸模工艺进行,能够对芯片的尺寸、形状、厚度和自旋密度进行相当程度的控制。芯片的体外氧响应呈线性、可重复,且与未封装的晶体无显著差异。结构灵活的PDMS的铸模能够制造出自旋密度定制的芯片,并确保嵌入的LiNc-BuO不暴露,减轻了潜在的生物相容性/毒理学问题。我们的结果表明,PDMS封装的LiNc-BuO是进一步进行生物学评估和潜在临床应用的有前景的候选物。

相似文献

1
Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry.
Biomed Microdevices. 2009 Aug;11(4):773-82. doi: 10.1007/s10544-009-9292-x.
3
Nanofiber-based paramagnetic probes for rapid, real-time biomedical oximetry.
Biomed Microdevices. 2016 Apr;18(2):38. doi: 10.1007/s10544-016-0063-1.
4
Pre-clinical evaluation of OxyChip for long-term EPR oximetry.
Biomed Microdevices. 2018 Mar 16;20(2):29. doi: 10.1007/s10544-018-0272-x.
5
A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry.
J Magn Reson. 2010 Mar;203(1):185-9. doi: 10.1016/j.jmr.2009.11.016. Epub 2009 Nov 26.
7
A molecular paramagnetic spin-doped biopolymeric oxygen sensor.
Biosens Bioelectron. 2010 Jun 15;25(10):2283-9. doi: 10.1016/j.bios.2010.03.011. Epub 2010 Mar 15.
9
Effect of nitrogen dioxide on the EPR property of lithium octa-n-butoxy 2,3-naphthalocyanine (LiNc-BuO) microcrystals.
J Magn Reson. 2006 Jul;181(1):154-61. doi: 10.1016/j.jmr.2006.04.004. Epub 2006 May 11.

引用本文的文献

1
Pulse and CW EPR Oximetry Using Oxychip in Gemcitabine-Treated Murine Pancreatic Tumors.
Mol Imaging Biol. 2024 Jun;26(3):473-483. doi: 10.1007/s11307-023-01859-w. Epub 2023 Oct 2.
2
The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia.
Front Pharmacol. 2022 Jul 15;13:853568. doi: 10.3389/fphar.2022.853568. eCollection 2022.
3
Evaluation of a Refined Implantable Resonator for Deep-Tissue EPR Oximetry in the Clinic.
Appl Magn Reson. 2021 Oct;52(10):1321-1342. doi: 10.1007/s00723-021-01376-5. Epub 2021 Jul 9.
4
OxyChip embedded with radio-opaque gold nanoparticles for anatomic registration and oximetry in tissues.
Magn Reson Med. 2022 Mar;87(3):1621-1637. doi: 10.1002/mrm.29039. Epub 2021 Oct 31.
6
Development of an L-band rapid scan EPR digital console.
J Magn Reson. 2019 Jul;304:42-52. doi: 10.1016/j.jmr.2019.05.003. Epub 2019 May 10.
7
Oxygenic photosynthesis: EPR study of photosynthetic electron transport and oxygen-exchange, an overview.
Cell Biochem Biophys. 2019 Mar;77(1):47-59. doi: 10.1007/s12013-018-0861-6. Epub 2018 Nov 20.
8
Transcutaneous oxygen measurement in humans using a paramagnetic skin adhesive film.
Magn Reson Med. 2019 Feb;81(2):781-794. doi: 10.1002/mrm.27445. Epub 2018 Sep 11.
9
Wireless implantable coil with parametric amplification for in vivo electron paramagnetic resonance oximetric applications.
Magn Reson Med. 2018 Nov;80(5):2288-2298. doi: 10.1002/mrm.27185. Epub 2018 Mar 30.

本文引用的文献

1
Polymer coating of paramagnetic particulates for in vivo oxygen-sensing applications.
Biomed Microdevices. 2009 Apr;11(2):379-87. doi: 10.1007/s10544-008-9244-x.
2
Retrievable micro-inserts containing oxygen sensors for monitoring tissue oxygenation using EPR oximetry.
Physiol Meas. 2008 Nov;29(11):1247-54. doi: 10.1088/0967-3334/29/11/001. Epub 2008 Oct 9.
3
Evaluation of oxygen-response times of phthalocyanine-based crystalline paramagnetic spin probes for EPR oximetry.
J Magn Reson. 2008 Jul;193(1):127-32. doi: 10.1016/j.jmr.2008.04.034. Epub 2008 Apr 29.
5
Methods for noninvasive imaging of tissue hypoxia.
Antioxid Redox Signal. 2007 Oct;9(10):1745-56. doi: 10.1089/ars.2007.1717.
6
7
Role of oxygen in postischemic myocardial injury.
Antioxid Redox Signal. 2007 Aug;9(8):1193-206. doi: 10.1089/ars.2007.1636.
8
Wounds: an overview of the role of oxygen.
Antioxid Redox Signal. 2007 Aug;9(8):1183-92. doi: 10.1089/ars.2007.1641.
10
Detection and characterization of tumor hypoxia using pO2 histography.
Antioxid Redox Signal. 2007 Aug;9(8):1221-35. doi: 10.1089/ars.2007.1628.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验