Suppr超能文献

一种含有锂萘嵌苯微晶体的顺磁植入物,用于高分辨率生物血氧测定。

A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry.

机构信息

Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.

出版信息

J Magn Reson. 2010 Mar;203(1):185-9. doi: 10.1016/j.jmr.2009.11.016. Epub 2009 Nov 26.

Abstract

Lithium naphthalocyanine (LiNc) is a microcrystalline EPR oximetry probe with high sensitivity to oxygen [R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P.C. Hammel, P.T. Manoharan, P. Kuppusamy, Molecular packing and magnetic properties of lithium naphthalocyanine crystal: hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen J. Mater. Chem. 19 (2009) 4138-4147]. However, direct implantation of the crystals in the tissue for in vivo oxygen measurements may be hindered by concerns associated with their direct contact with the tissue/cells and loss of EPR signal due to particle migration in the tissue. In order to address these concerns, we have developed encapsulations (chips) of LiNc microcrystals in polydimethyl siloxane (PDMS), an oxygen-permeable, bioinert polymer. Oximetry evaluation of the fabricated chips revealed that the oxygen sensitivity of the crystals was unaffected by encapsulation in PDMS. Chips were stable against sterilization procedures or treatment with common biological oxidoreductants. In vivo oxygen measurements established the ability of the chips to provide reliable and repeated measurements of tissue oxygenation. This study establishes PDMS-encapsulated LiNc as a potential probe for long-term and repeated measurements of tissue oxygenation.

摘要

锂萘嵌苯(LiNc)是一种微结晶 EPR 氧合探针,对氧气具有高灵敏度[R.P. Pandian、M. Dolgos、C. Marginean、P.M. Woodward、P.C. Hammel、P.T. Manoharan、P. Kuppusamy,锂萘嵌苯晶体的分子堆积和磁性:空心通道使渗透性和对分子氧的顺磁性敏感性得以实现 J. Mater. Chem. 19 (2009) 4138-4147]。然而,由于人们担心晶体直接与组织/细胞接触以及颗粒在组织中迁移导致 EPR 信号丢失,因此直接将晶体植入组织中进行活体氧测量可能会受到阻碍。为了解决这些问题,我们已经开发了将 LiNc 微晶体封装在聚二甲基硅氧烷(PDMS)中的封装(芯片),PDMS 是一种氧气可渗透、生物惰性聚合物。对制造的芯片进行的 oximetry 评估表明,晶体的氧灵敏度不受 PDMS 封装的影响。芯片对灭菌程序或常见生物氧化还原试剂的处理具有稳定性。活体氧测量确立了芯片提供组织氧合可靠和重复测量的能力。这项研究确立了 PDMS 封装的 LiNc 作为长期和重复测量组织氧合的潜在探针。

相似文献

1
A paramagnetic implant containing lithium naphthalocyanine microcrystals for high-resolution biological oximetry.
J Magn Reson. 2010 Mar;203(1):185-9. doi: 10.1016/j.jmr.2009.11.016. Epub 2009 Nov 26.
3
Evaluation of lithium naphthalocyanine (LiNc) microcrystals for biological EPR oximetry.
Adv Exp Med Biol. 2011;701:29-36. doi: 10.1007/978-1-4419-7756-4_5.
5
Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry.
Biomed Microdevices. 2009 Aug;11(4):773-82. doi: 10.1007/s10544-009-9292-x.
6
Nanofiber-based paramagnetic probes for rapid, real-time biomedical oximetry.
Biomed Microdevices. 2016 Apr;18(2):38. doi: 10.1007/s10544-016-0063-1.
8
A molecular paramagnetic spin-doped biopolymeric oxygen sensor.
Biosens Bioelectron. 2010 Jun 15;25(10):2283-9. doi: 10.1016/j.bios.2010.03.011. Epub 2010 Mar 15.
9
A naphthalocyanine-based EPR probe for localized measurements of tissue oxygenation.
Free Radic Biol Med. 2002 Jan 15;32(2):139-47. doi: 10.1016/s0891-5849(01)00784-5.
10
Pre-clinical evaluation of OxyChip for long-term EPR oximetry.
Biomed Microdevices. 2018 Mar 16;20(2):29. doi: 10.1007/s10544-018-0272-x.

引用本文的文献

1
Lithium phthalocyanine (γ-structure) as a molecular oxygen sensor.
RSC Adv. 2025 Feb 5;15(5):3738-3748. doi: 10.1039/d4ra08335k. eCollection 2025 Jan 29.
2
The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia.
Front Pharmacol. 2022 Jul 15;13:853568. doi: 10.3389/fphar.2022.853568. eCollection 2022.
3
Evaluation of a Refined Implantable Resonator for Deep-Tissue EPR Oximetry in the Clinic.
Appl Magn Reson. 2021 Oct;52(10):1321-1342. doi: 10.1007/s00723-021-01376-5. Epub 2021 Jul 9.
4
Injectable, thermosensitive, fast gelation, bioeliminable, and oxygen sensitive hydrogels.
Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:1191-1198. doi: 10.1016/j.msec.2019.02.075. Epub 2019 Feb 20.
5
Transcutaneous oxygen measurement in humans using a paramagnetic skin adhesive film.
Magn Reson Med. 2019 Feb;81(2):781-794. doi: 10.1002/mrm.27445. Epub 2018 Sep 11.
7
In Vivo pO2 Imaging of Tumors: Oxymetry with Very Low-Frequency Electron Paramagnetic Resonance.
Methods Enzymol. 2015;564:501-27. doi: 10.1016/bs.mie.2015.08.017. Epub 2015 Sep 26.
8
Advances in probes and methods for clinical EPR oximetry.
Adv Exp Med Biol. 2014;812:73-79. doi: 10.1007/978-1-4939-0620-8_10.
9
Clinical EPR: unique opportunities and some challenges.
Acad Radiol. 2014 Feb;21(2):197-206. doi: 10.1016/j.acra.2013.10.011.
10
A molecular paramagnetic spin-doped biopolymeric oxygen sensor.
Biosens Bioelectron. 2010 Jun 15;25(10):2283-9. doi: 10.1016/j.bios.2010.03.011. Epub 2010 Mar 15.

本文引用的文献

3
Fabrication and physical evaluation of a polymer-encapsulated paramagnetic probe for biomedical oximetry.
Biomed Microdevices. 2009 Aug;11(4):773-82. doi: 10.1007/s10544-009-9292-x.
4
Polymer coating of paramagnetic particulates for in vivo oxygen-sensing applications.
Biomed Microdevices. 2009 Apr;11(2):379-87. doi: 10.1007/s10544-008-9244-x.
6
Role of oxygen in postischemic myocardial injury.
Antioxid Redox Signal. 2007 Aug;9(8):1193-206. doi: 10.1089/ars.2007.1636.
7
Wounds: an overview of the role of oxygen.
Antioxid Redox Signal. 2007 Aug;9(8):1183-92. doi: 10.1089/ars.2007.1641.
9
Detection and characterization of tumor hypoxia using pO2 histography.
Antioxid Redox Signal. 2007 Aug;9(8):1221-35. doi: 10.1089/ars.2007.1628.
10
In vivo imaging of changes in tumor oxygenation during growth and after treatment.
Magn Reson Med. 2007 May;57(5):950-9. doi: 10.1002/mrm.21212.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验