Suppr超能文献

使用针对密集分子标记和系谱的回归模型预测数量性状。

Predicting quantitative traits with regression models for dense molecular markers and pedigree.

作者信息

de los Campos Gustavo, Naya Hugo, Gianola Daniel, Crossa José, Legarra Andrés, Manfredi Eduardo, Weigel Kent, Cotes José Miguel

机构信息

Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.

出版信息

Genetics. 2009 May;182(1):375-85. doi: 10.1534/genetics.109.101501. Epub 2009 Mar 16.

Abstract

The availability of genomewide dense markers brings opportunities and challenges to breeding programs. An important question concerns the ways in which dense markers and pedigrees, together with phenotypic records, should be used to arrive at predictions of genetic values for complex traits. If a large number of markers are included in a regression model, marker-specific shrinkage of regression coefficients may be needed. For this reason, the Bayesian least absolute shrinkage and selection operator (LASSO) (BL) appears to be an interesting approach for fitting marker effects in a regression model. This article adapts the BL to arrive at a regression model where markers, pedigrees, and covariates other than markers are considered jointly. Connections between BL and other marker-based regression models are discussed, and the sensitivity of BL with respect to the choice of prior distributions assigned to key parameters is evaluated using simulation. The proposed model was fitted to two data sets from wheat and mouse populations, and evaluated using cross-validation methods. Results indicate that inclusion of markers in the regression further improved the predictive ability of models. An R program that implements the proposed model is freely available.

摘要

全基因组密集标记的可用性给育种计划带来了机遇和挑战。一个重要的问题涉及如何将密集标记、系谱以及表型记录结合起来,以得出复杂性状遗传值的预测。如果回归模型中包含大量标记,则可能需要对回归系数进行特定于标记的收缩。因此,贝叶斯最小绝对收缩和选择算子(LASSO)(BL)似乎是在回归模型中拟合标记效应的一种有趣方法。本文对BL进行了调整,以得到一个联合考虑标记、系谱和除标记外的协变量的回归模型。讨论了BL与其他基于标记的回归模型之间的联系,并通过模拟评估了BL对分配给关键参数的先验分布选择的敏感性。将所提出的模型应用于来自小麦和小鼠群体的两个数据集,并使用交叉验证方法进行评估。结果表明,在回归中纳入标记进一步提高了模型的预测能力。一个实现所提出模型的R程序可免费获取。

相似文献

引用本文的文献

2
Enhancing wheat genomic prediction by a hybrid kernel approach.通过混合核方法增强小麦基因组预测
Front Plant Sci. 2025 Aug 1;16:1605202. doi: 10.3389/fpls.2025.1605202. eCollection 2025.
9
Optimizing drought tolerance in cassava through genomic selection.通过基因组选择优化木薯的耐旱性。
Front Plant Sci. 2024 Dec 16;15:1483340. doi: 10.3389/fpls.2024.1483340. eCollection 2024.

本文引用的文献

2
Performance of genomic selection in mice.小鼠基因组选择的性能。
Genetics. 2008 Sep;180(1):611-8. doi: 10.1534/genetics.108.088575. Epub 2008 Aug 30.
3
Bayesian LASSO for quantitative trait loci mapping.用于数量性状基因座定位的贝叶斯套索法
Genetics. 2008 Jun;179(2):1045-55. doi: 10.1534/genetics.107.085589. Epub 2008 May 27.
7
Genetic and environmental effects on complex traits in mice.基因和环境对小鼠复杂性状的影响。
Genetics. 2006 Oct;174(2):959-84. doi: 10.1534/genetics.106.060004. Epub 2006 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验