Cuevas Jaime, Crossa Jose, Montesinos-López Abelardo, Martini Johannes W R, Gerard Guillermo Sebastiáń, Ortegón Jaime, Dreisigacker Susanne, Govindan Velu, Pérez-Rodríguez Paulino, Saint Pierre Carolina, Herrera Leonardo Abdiel Crespo, Montesinos-López Osval A, Vitale Paolo
División de Ciencias, Ingeniería y Tecnologías (DCIT), Universidad Autónoma del Estado de Quintana Roo, Chetumal, Quintana Roo, Mexico.
International Maize and Wheat Improvement Center (CIMMYT), Mexico-Veracruz, Edo. de México, Mexico.
Front Plant Sci. 2025 Aug 1;16:1605202. doi: 10.3389/fpls.2025.1605202. eCollection 2025.
This study integrates genomic and pedigree data by leveraging advanced modeling techniques, aiming to enhance the predictive performance of genomic selection models by capturing complex genetic relationships through the interaction of both matrices and exploring the utility of non-linear methods, such as kernel matrices. Our goal was to improve genomic prediction accuracy by combining the pedigree-based or genetic similarity matrix ( ) with the genomic similarity matrix ( ). Using various wheat datasets, we performed five single-environment models and five multi-environment models that incorporated genotype-by-environment (G × E) interactions. The proposed models S5 and M5 significantly enhanced prediction accuracy by incorporating two novel symmetric kernels, and , derived from the interaction of genomic and pedigree matrices. These hybrid kernels captured additional, independent genetic variation not explained by conventional matrices. The proposed prediction model outperformed the standard conventional models in most single-environment and multi-environment models. The genomic models with non-linear kernels were better predictors than the linear prediction models.
本研究通过利用先进的建模技术整合基因组和系谱数据,旨在通过矩阵间的相互作用捕捉复杂的遗传关系,并探索非线性方法(如核矩阵)的效用,从而提高基因组选择模型的预测性能。我们的目标是通过将基于系谱的或遗传相似性矩阵( )与基因组相似性矩阵( )相结合来提高基因组预测准确性。使用各种小麦数据集,我们进行了五个单环境模型和五个纳入基因型与环境互作(G×E)的多环境模型。所提出的模型S5和M5通过纳入从基因组和系谱矩阵相互作用中得出的两个新型对称核 和 ,显著提高了预测准确性。这些混合核捕捉到了传统矩阵未解释的额外独立遗传变异。在大多数单环境和多环境模型中,所提出的预测模型优于标准传统模型。具有非线性核的基因组模型比线性预测模型是更好的预测器。