Pfalz Marina, Vogel Heiko, Kroymann Juergen
Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany.
Plant Cell. 2009 Mar;21(3):985-99. doi: 10.1105/tpc.108.063115. Epub 2009 Mar 17.
Glucosinolates are defensive secondary compounds that display large structural diversity in Arabidopsis thaliana and related plants. Much attention has been paid to variation in the biosynthesis of Met-derived aliphatic glucosinolates and its ecological consequences, but little is known about the genes that cause qualitative and quantitative differences in Trp-derived indole glucosinolates. We use a combination of quantitative trait locus (QTL) fine-mapping and microarray-based transcript profiling to identify CYP81F2 (At5g57220), encoding a cytochrome P450 monooxygenase, as the gene underlying Indole Glucosinolate Modifier1 (IGM1), a metabolic QTL for the accumulation of two modified indole glucosinolates, 4-hydroxy-indole-3-yl-methyl and 4-methoxy-indole-3-yl-methyl glucosinolate. We verify CYP81F2 function with two SALK T-DNA insertion lines and show that CYP81F2 catalyzes the conversion of indole-3-yl-methyl to 4-hydroxy-indole-3-yl-methyl glucosinolate. We further show that the IGM1 QTL is largely caused by differences in CYP81F2 expression, which results from a combination of cis- and trans-acting expression QTL different from known regulators of indole glucosinolate biosynthesis. Finally, we elucidate a potential function of CYP81F2 in plant-insect interactions and find that CYP81F2 contributes to defense against the green peach aphid (Myzus persicae) but not to resistance against herbivory by larvae from four lepidopteran species.
硫代葡萄糖苷是防御性次生化合物,在拟南芥和相关植物中表现出巨大的结构多样性。人们对蛋氨酸衍生的脂肪族硫代葡萄糖苷生物合成的变异及其生态后果给予了很多关注,但对于导致色氨酸衍生的吲哚硫代葡萄糖苷出现质和量差异的基因却知之甚少。我们结合数量性状基因座(QTL)精细定位和基于微阵列的转录谱分析,鉴定出编码细胞色素P450单加氧酶的CYP81F2(At5g57220)作为吲哚硫代葡萄糖苷修饰因子1(IGM1)的潜在基因,IGM1是一个代谢QTL,与两种修饰的吲哚硫代葡萄糖苷(4-羟基吲哚-3-基甲基和4-甲氧基吲哚-3-基甲基硫代葡萄糖苷)的积累有关。我们用两个SALK T-DNA插入系验证了CYP81F2的功能,并表明CYP81F2催化吲哚-3-基甲基向4-羟基吲哚-3-基甲基硫代葡萄糖苷的转化。我们进一步表明,IGM1 QTL主要是由CYP81F2表达差异引起的,这种差异是由顺式和反式作用表达QTL共同作用导致的,这些QTL不同于已知的吲哚硫代葡萄糖苷生物合成调节因子。最后,我们阐明了CYP81F2在植物-昆虫相互作用中的潜在功能,发现CYP81F2有助于抵御桃蚜(Myzus persicae),但对四种鳞翅目幼虫的食草抗性没有作用。