Suppr超能文献

矢状面躯干位置、着地力量和股四头肌肌电活动。

Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.

作者信息

Blackburn J Troy, Padua Darin A

机构信息

The University of North Carolina, Chapel Hill, NC 27599-8605, USA.

出版信息

J Athl Train. 2009 Mar-Apr;44(2):174-9. doi: 10.4085/1062-6050-44.2.174.

Abstract

CONTEXT

Researchers have suggested that large landing forces, excessive quadriceps activity, and an erect posture during landing are risk factors for anterior cruciate ligament (ACL) injury. The influence of knee kinematics on these risk factors has been investigated extensively, but trunk positioning has received little attention.

OBJECTIVE

To determine the effect of trunk flexion on landing forces and quadriceps activation during landing.

DESIGN

Two (sex) x 2 (task) repeated-measures design.

SETTING

Research laboratory.

PATIENTS OR OTHER PARTICIPANTS

Forty healthy, physically active volunteers (20 men, 20 women).

INTERVENTION(S): Participants performed 2 drop-landing tasks. The first task represented the natural, or preferred, landing strategy. The second task was identical to the first except that participants flexed the trunk during landing.

MAIN OUTCOME MEASURE(S): We measured peak vertical and posterior ground reaction forces and mean quadriceps electromyographic amplitude during the loading phase of landing (ie, the interval from initial ground contact to peak knee flexion).

RESULTS

Trunk flexion decreased the vertical ground reaction force (P < .001) and quadriceps electromyographic amplitude (P < .001). The effect of trunk flexion did not differ across sex for landing forces or quadriceps electromyographic activity.

CONCLUSIONS

We found that trunk flexion during landing reduced landing forces and quadriceps activity, thus potentially reducing the force imparted to the ACL. Research has indicated that trunk flexion during landing also increases knee and hip flexion, resulting in a less erect landing posture. In combination, these findings support emphasis on trunk flexion during landing as part of ACL injury-prevention programs.

摘要

背景

研究人员指出,大规模登陆部队、股四头肌过度活动以及着陆时的直立姿势是前交叉韧带(ACL)损伤的风险因素。膝关节运动学对这些风险因素的影响已得到广泛研究,但躯干位置却很少受到关注。

目的

确定着陆过程中躯干屈曲对着陆力和股四头肌激活的影响。

设计

两(性别)×2(任务)重复测量设计。

地点

研究实验室。

患者或其他参与者

40名健康、身体活跃的志愿者(20名男性,20名女性)。

干预措施

参与者执行两项下落着陆任务。第一项任务代表自然的或偏好的着陆策略。第二项任务与第一项相同,只是参与者在着陆时屈曲躯干。

主要观察指标

我们测量了着陆加载阶段(即从初始地面接触到膝关节屈曲峰值的间隔)的垂直和后向地面反应力峰值以及股四头肌肌电图平均幅度。

结果

躯干屈曲降低了垂直地面反应力(P <.001)和股四头肌肌电图幅度(P <.001)。躯干屈曲对着陆力或股四头肌肌电活动的影响在不同性别之间没有差异。

结论

我们发现着陆时躯干屈曲降低了着陆力和股四头肌活动,从而可能减少施加到ACL的力。研究表明,着陆时躯干屈曲还会增加膝关节和髋关节的屈曲,导致着陆姿势不那么直立。综合起来,这些发现支持在ACL损伤预防计划中强调着陆时的躯干屈曲。

相似文献

1
Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
J Athl Train. 2009 Mar-Apr;44(2):174-9. doi: 10.4085/1062-6050-44.2.174.
3
Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.
J Athl Train. 2013 Nov-Dec;48(6):748-56. doi: 10.4085/1062-6050-48.4.09. Epub 2013 Aug 14.
4
Ankle-dorsiflexion range of motion and landing biomechanics.
J Athl Train. 2011 Jan-Feb;46(1):5-10. doi: 10.4085/1062-6050-46.1.5.
5
Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
J Athl Train. 2013 Nov-Dec;48(6):764-72. doi: 10.4085/1062-6050-48.4.01.
6
Changing sagittal plane body position during single-leg landings influences the risk of non-contact anterior cruciate ligament injury.
Knee Surg Sports Traumatol Arthrosc. 2013 Apr;21(4):888-97. doi: 10.1007/s00167-012-2011-9. Epub 2012 Apr 28.
7
8
Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing.
Clin Biomech (Bristol). 2008 Mar;23(3):313-9. doi: 10.1016/j.clinbiomech.2007.10.003. Epub 2007 Nov 26.
10

引用本文的文献

2
Old Habits Die Hard: Kinematic Carryover Between Low- and High-Impact Tasks in Active Females.
Sports (Basel). 2025 May 25;13(6):160. doi: 10.3390/sports13060160.
4
Kinetic analysis of change of direction simulating a defensive action in soccer players with and without acute fatigue.
Heliyon. 2024 Nov 7;10(22):e40213. doi: 10.1016/j.heliyon.2024.e40213. eCollection 2024 Nov 30.
5
Effect of foot strike patterns and angles on the biomechanics of side-step cutting.
Front Bioeng Biotechnol. 2024 Nov 6;12:1461247. doi: 10.3389/fbioe.2024.1461247. eCollection 2024.
6
Individual factors determine landing impacts in rested and fatigued cheerleaders.
Front Sports Act Living. 2024 Aug 13;6:1419783. doi: 10.3389/fspor.2024.1419783. eCollection 2024.
7
Computational study of extrinsic factors affecting ACL strain during single-leg jump landing.
BMC Musculoskelet Disord. 2024 Apr 23;25(1):318. doi: 10.1186/s12891-024-07372-7.
8
The Effects of Fatigue on the Lower Limb Biomechanics of Amateur Athletes during a Y-Balance Test.
Healthcare (Basel). 2023 Sep 16;11(18):2565. doi: 10.3390/healthcare11182565.

本文引用的文献

1
Muscle activation during side-step cutting maneuvers in male and female soccer athletes.
J Athl Train. 2008 Apr-Jun;43(2):133-43. doi: 10.4085/1062-6050-43.2.133.
2
Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing.
Clin Biomech (Bristol). 2008 Mar;23(3):313-9. doi: 10.1016/j.clinbiomech.2007.10.003. Epub 2007 Nov 26.
3
The effect of trunk flexion on able-bodied gait.
Gait Posture. 2008 May;27(4):653-60. doi: 10.1016/j.gaitpost.2007.08.009. Epub 2007 Oct 24.
8
Lower extremity biomechanics during the landing of a stop-jump task.
Clin Biomech (Bristol). 2006 Mar;21(3):297-305. doi: 10.1016/j.clinbiomech.2005.11.003. Epub 2005 Dec 27.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验