Suppr超能文献

腘绳肌僵硬和落地生物力学与前交叉韧带负荷有关。

Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.

机构信息

Neuromuscular Research Laboratory, University of North Carolina at Chapel Hill.

出版信息

J Athl Train. 2013 Nov-Dec;48(6):764-72. doi: 10.4085/1062-6050-48.4.01.

Abstract

CONTEXT

Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks.

OBJECTIVE

To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury.

DESIGN

Cross-sectional study.

SETTING

Research laboratory.

PATIENTS OR OTHER PARTICIPANTS

A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg).

INTERVENTION(S): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests.

MAIN OUTCOME MEASURE(S): Hamstrings stiffness was normalized to body mass (N/m·kg(-1)). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height.

RESULTS

Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729-2.224, P < .05).

CONCLUSIONS

Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs.

摘要

背景

在受控干扰下,腘绳肌硬度较大与胫骨前位移较小相关。然而,在动态任务中,腘绳肌硬度如何影响前交叉韧带(ACL)的加载机制尚不清楚。

目的

评估腘绳肌硬度对与 ACL 损伤相关的着陆生物力学的影响。

设计

横断面研究。

设置

研究实验室。

患者或其他参与者

共有 36 名健康、活跃的志愿者(18 名男性,18 名女性;年龄=23±3 岁,身高=1.8±0.1 m,体重=73.1±16.6 kg)。

干预

通过阻尼振荡技术量化腘绳肌硬度。通过三维运动捕捉系统与力板接口,在双腿跳跃着陆任务中捕获下肢的三维运动学和动力学。通过独立样本 t 检验比较显示高和低腘绳肌硬度的组之间的着陆生物力学。

主要观察指标

将腘绳肌硬度归一化为体重(N/m·kg(-1))。在着陆任务中,确定峰值膝关节屈曲和外翻角度、垂直和后向地面反作用力、胫骨前剪切力、膝关节内伸和内翻力矩以及每个峰值动力学变量的膝关节屈曲角度。力被归一化为体重,而力矩被归一化为体重和高度的乘积。

结果

高硬度组的膝关节内翻力矩小 3.6 倍(t22=2.221,P=0.02)。数据也表明,高硬度组的峰值胫骨前剪切力小 1.1 倍(t22=1.537,P=0.07)。高硬度组在峰值胫骨前剪切力和膝关节内伸和内翻力矩的瞬间还表现出更大的膝关节屈曲(t22 范围=1.729-2.224,P<0.05)。

结论

更大的腘绳肌硬度与 ACL 加载和受伤风险较低的着陆生物力学相关。肌腱硬度是一个可调节的特征;因此,增强腘绳肌硬度的运动可能是 ACL 损伤预防计划的重要补充。

相似文献

1
Hamstrings stiffness and landing biomechanics linked to anterior cruciate ligament loading.
J Athl Train. 2013 Nov-Dec;48(6):764-72. doi: 10.4085/1062-6050-48.4.01.
2
Lower extremity energy absorption and biomechanics during landing, part I: sagittal-plane energy absorption analyses.
J Athl Train. 2013 Nov-Dec;48(6):748-56. doi: 10.4085/1062-6050-48.4.09. Epub 2013 Aug 14.
3
Associations Among Eccentric Hamstrings Strength, Hamstrings Stiffness, and Jump-Landing Biomechanics.
J Athl Train. 2020 Jul 1;55(7):717-723. doi: 10.4085/1062-6050-151-19.
6
7
Lower extremity muscle strength after anterior cruciate ligament injury and reconstruction.
J Athl Train. 2013 Sep-Oct;48(5):610-20. doi: 10.4085/1062-6050-48.3.23.
8
Contribution of ankle motion pattern during landing to reduce the knee-related injury risk.
Comput Biol Med. 2024 Sep;180:108965. doi: 10.1016/j.compbiomed.2024.108965. Epub 2024 Jul 30.

引用本文的文献

2
Computational study of extrinsic factors affecting ACL strain during single-leg jump landing.
BMC Musculoskelet Disord. 2024 Apr 23;25(1):318. doi: 10.1186/s12891-024-07372-7.
5
Clinical Reproducibility and Reliability of Lever Sign (Lelli's) Test for Acute ACL Tear Performed by Medical Students.
Adv Med Educ Pract. 2023 Mar 28;14:289-295. doi: 10.2147/AMEP.S402496. eCollection 2023.
6
Application of Shear-Wave Elastography in the Evaluation of Hamstring Stiffness in Young Basketball Athletes.
Int J Sports Phys Ther. 2022 Dec 1;17(7):1236-1248. doi: 10.26603/001c.55757. eCollection 2022.
7
Effect of different landing actions on knee joint biomechanics of female college athletes: Based on opensim simulation.
Front Bioeng Biotechnol. 2022 Oct 26;10:899799. doi: 10.3389/fbioe.2022.899799. eCollection 2022.
9
The Influence of Active Hamstring Stiffness on Markers of Isotonic Muscle Performance.
Sports (Basel). 2021 May 20;9(5):70. doi: 10.3390/sports9050070.

本文引用的文献

1
2
Influences of hamstring stiffness and strength on anterior knee joint stability.
Clin Biomech (Bristol). 2011 Mar;26(3):278-83. doi: 10.1016/j.clinbiomech.2010.10.002. Epub 2010 Nov 6.
3
5
Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments.
Clin Biomech (Bristol). 2010 Feb;25(2):142-6. doi: 10.1016/j.clinbiomech.2009.10.005. Epub 2009 Nov 13.
7
8
The effects of feedback with and without strength training on lower extremity biomechanics.
Am J Sports Med. 2009 Jul;37(7):1301-8. doi: 10.1177/0363546509332253. Epub 2009 Mar 19.
9
Sagittal-plane trunk position, landing forces, and quadriceps electromyographic activity.
J Athl Train. 2009 Mar-Apr;44(2):174-9. doi: 10.4085/1062-6050-44.2.174.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验