Suppr超能文献

酿酒酵母Skn7受体结构域的氧化应激功能。

Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain.

作者信息

He Xin-Jian, Mulford KariAn E, Fassler Jan S

机构信息

Department of Biology, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Eukaryot Cell. 2009 May;8(5):768-78. doi: 10.1128/EC.00021-09. Epub 2009 Mar 20.

Abstract

The bifunctional Saccharomyces cerevisiae Skn7 transcription factor regulates osmotic stress response genes as well as oxidative stress response genes; however, the mechanisms involved in these two types of regulation differ. Skn7 osmotic stress activity depends on the phosphorylation of the receiver domain aspartate, D427, by the Sln1 histidine kinase. In contrast, D427 and the SLN1-SKN7 phosphorelay are dispensable for the oxidative stress response, although the receiver domain is required. The majority of oxidative stress response genes regulated by Skn7 also are regulated by the redox-responsive transcription factor Yap1. It is therefore possible that the nuclearly localized Skn7 does not itself respond to the oxidant but simply cooperates with Yap1 when it translocates to the nucleus. We report here that oxidative stress leads to a phosphatase-sensitive, slow-mobility Skn7 variant. This suggests that Skn7 undergoes a posttranslational modification by phosphorylation following exposure to oxidant. Oxidant-dependent Skn7 phosphorylation was eliminated in strains lacking the Yap1 transcription factor. This suggests that the phosphorylation of Skn7 is regulated by Yap1. Mutations in the receiver domain of Skn7 were identified that affect its oxidative stress function. These mutations were found to compromise the association of Yap1 and Skn7 at oxidative stress response gene promoters. A working model is proposed in which the association of Yap1 with Skn7 in the nucleus is a prerequisite for Skn7 phosphorylation and the activation of oxidative stress response genes.

摘要

双功能酿酒酵母Skn7转录因子可调节渗透应激反应基因以及氧化应激反应基因;然而,这两种调节所涉及的机制有所不同。Skn7的渗透应激活性取决于Sln1组氨酸激酶对受体结构域天冬氨酸D427的磷酸化作用。相比之下,尽管需要受体结构域,但D427和SLN1-SKN7磷酸化信号传递对于氧化应激反应是可有可无的。Skn7调控的大多数氧化应激反应基因也受氧化还原反应转录因子Yap1的调控。因此,有可能定位于细胞核的Skn7本身并不对氧化剂作出反应,而是在Yap1易位至细胞核时与其简单协作。我们在此报告,氧化应激会导致一种对磷酸酶敏感、迁移缓慢的Skn7变体。这表明Skn7在暴露于氧化剂后会通过磷酸化进行翻译后修饰。在缺乏Yap1转录因子的菌株中,氧化剂依赖性Skn7磷酸化作用消失。这表明Skn7的磷酸化受Yap1调控。已鉴定出Skn7受体结构域中的突变会影响其氧化应激功能。这些突变被发现会损害Yap1与Skn7在氧化应激反应基因启动子处的结合。我们提出了一个工作模型,其中Yap1与Skn7在细胞核中的结合是Skn7磷酸化以及氧化应激反应基因激活的先决条件。

相似文献

1
Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain.
Eukaryot Cell. 2009 May;8(5):768-78. doi: 10.1128/EC.00021-09. Epub 2009 Mar 20.
2
Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response.
Eukaryot Cell. 2011 Jun;10(6):761-9. doi: 10.1128/EC.00328-10. Epub 2011 Apr 8.
7
Yap1 and Skn7 genetically interact with Rad51 in response to oxidative stress and DNA double-strand break in Saccharomyces cerevisiae.
Free Radic Biol Med. 2016 Dec;101:424-433. doi: 10.1016/j.freeradbiomed.2016.11.005. Epub 2016 Nov 9.
9
The essential protein fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae.
Mol Microbiol. 2000 Feb;35(4):936-48. doi: 10.1046/j.1365-2958.2000.01768.x.
10
Role for the Ran binding protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 signal transduction.
Eukaryot Cell. 2004 Dec;3(6):1544-56. doi: 10.1128/EC.3.6.1544-1556.2004.

引用本文的文献

1
The regulatory network of transcription factor Skn7 collaborates with bHLH1 during fungal-fungal interactions.
Microbiol Spectr. 2025 Sep 2;13(9):e0048425. doi: 10.1128/spectrum.00484-25. Epub 2025 Jul 30.
2
Mechanisms and Strategies for Engineering Oxidative Stress Resistance in .
Chem Bio Eng. 2025 May 29;2(7):409-422. doi: 10.1021/cbe.5c00021. eCollection 2025 Jul 24.
3
Response to Oxidative Stress in .
J Fungi (Basel). 2025 Jun 10;11(6):440. doi: 10.3390/jof11060440.
4
When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in .
mSphere. 2025 Jan 28;10(1):e0064423. doi: 10.1128/msphere.00644-23. Epub 2024 Dec 20.
5
Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms.
Plant Pathol J. 2024 Jun;40(3):235-250. doi: 10.5423/PPJ.RW.01.2024.0001. Epub 2024 Jun 1.
6
Procymidone Application Contributes to Multidrug Resistance of .
J Fungi (Basel). 2024 Mar 29;10(4):261. doi: 10.3390/jof10040261.
7
Oxidative stress response pathways in fungi.
Cell Mol Life Sci. 2022 Jun 1;79(6):333. doi: 10.1007/s00018-022-04353-8.
9
Comparative Proteomic Analysis within the Developmental Stages of the Mushroom White .
J Fungi (Basel). 2021 Dec 11;7(12):1064. doi: 10.3390/jof7121064.

本文引用的文献

1
Regulation of the oxidative stress response through Slt2p-dependent destruction of cyclin C in Saccharomyces cerevisiae.
Genetics. 2006 Mar;172(3):1477-86. doi: 10.1534/genetics.105.052266. Epub 2005 Dec 30.
3
Identification and characterization of an SKN7 homologue in Cryptococcus neoformans.
Infect Immun. 2005 Aug;73(8):5022-30. doi: 10.1128/IAI.73.8.5022-5030.2005.
4
Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance.
Mol Microbiol. 2004 Sep;53(6):1743-56. doi: 10.1111/j.1365-2958.2004.04238.x.
6
SKN7 of Candida albicans: mutant construction and phenotype analysis.
Infect Immun. 2004 Apr;72(4):2390-4. doi: 10.1128/IAI.72.4.2390-2394.2004.
7
Molecular recognitions in the MAP kinase cascades.
Cell Signal. 2003 May;15(5):455-62. doi: 10.1016/s0898-6568(02)00112-2.
8
A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation.
Cell. 2002 Nov 15;111(4):471-81. doi: 10.1016/s0092-8674(02)01048-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验