Suppr超能文献

抗体增强的、Fcγ受体介导的艰难梭菌毒素A内吞作用

Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A.

作者信息

He Xiangyun, Sun Xingmin, Wang Jufang, Wang Xiaoning, Zhang Quanshun, Tzipori Saul, Feng Hanping

机构信息

Division of Infectious Diseases, Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.

出版信息

Infect Immun. 2009 Jun;77(6):2294-303. doi: 10.1128/IAI.01577-08. Epub 2009 Mar 23.

Abstract

Toxin A (TcdA) and toxin B (TcdB) are major virulence factors of Clostridium difficile. These two toxins intoxicate cultured cells by similar mechanisms, and TcdB generally is more potent than TcdA in cultured cells. The exact reason for this difference is unclear. Here, we report that the cellular effects of TcdA can be substantially enhanced via an opsonizing antibody through Fc gamma receptor I (FcgammaRI)-mediated endocytosis. A TcdA-specific monoclonal antibody, A1H3, was found to significantly enhance the cytotoxicity of TcdA to macrophages and monocytes. The A1H3-dependent enhancement of glucosyltransferase activity, cytoskeleton disruption, and tumor necrosis factor alpha production induced by TcdA was further demonstrated using RAW 264.7 cells. Subsequent experiments indicated that the interaction of FcgammaRI with A1H3 underlays the antibody-dependent enhancement of the cellular effects of TcdA. While blocking FcgammaRII and FcgammaRIII with anti-CD16/32 antibodies did not affect the TcdA-mediated glucosylation of Rac1 in RAW 264.7 cells, presaturation of FcgammaRI with anti-CD64 antibodies in THP1 cells significantly reduced this activity. Incubation of a TcdA-A1H3 immune complex with recombinant mouse CD64 completely abrogated the A1H3-mediated enhancement of the glucosyltransferase activity of TcdA in RAW 264.7 cells. Moreover, expression of FcgammaRI in CHO cells strikingly enhanced the sensitivity of these cells to TcdA complexed with A1H3. We showed that the presence of A1H3 facilitated cell surface recruitment of TcdA, contributing to the antibody-dependent, FcgammaRI-mediated enhancement of TcdA activity. Finally, studies using chlorpromazine and endosomal acidification inhibitors revealed an important role of the endocytic pathway in the A1H3-dependent enhancement of TcdA activity.

摘要

毒素A(TcdA)和毒素B(TcdB)是艰难梭菌的主要毒力因子。这两种毒素通过相似的机制使培养细胞中毒,并且在培养细胞中TcdB通常比TcdA更具毒性。这种差异的确切原因尚不清楚。在此,我们报告TcdA的细胞效应可通过调理抗体经Fcγ受体I(FcγRI)介导的内吞作用而显著增强。发现一种TcdA特异性单克隆抗体A1H3可显著增强TcdA对巨噬细胞和单核细胞的细胞毒性。使用RAW 264.7细胞进一步证明了A1H3依赖性增强TcdA诱导的葡糖基转移酶活性、细胞骨架破坏和肿瘤坏死因子α产生。随后的实验表明,FcγRI与A1H3的相互作用是抗体依赖性增强TcdA细胞效应的基础。虽然用抗CD16/32抗体阻断FcγRII和FcγRIII不影响RAW 264.7细胞中TcdA介导的Rac1糖基化,但在THP1细胞中用抗CD64抗体预饱和FcγRI可显著降低该活性。将TcdA-A1H3免疫复合物与重组小鼠CD64一起孵育可完全消除A1H3介导的RAW 264.7细胞中TcdA葡糖基转移酶活性的增强。此外,在CHO细胞中表达FcγRI显著增强了这些细胞对与A1H3复合的TcdA的敏感性。我们表明,A1H3的存在促进了TcdA在细胞表面的募集,有助于抗体依赖性、FcγRI介导的TcdA活性增强。最后,使用氯丙嗪和内体酸化抑制剂的研究揭示了内吞途径在A1H3依赖性增强TcdA活性中的重要作用。

相似文献

1
Antibody-enhanced, Fc gamma receptor-mediated endocytosis of Clostridium difficile toxin A.
Infect Immun. 2009 Jun;77(6):2294-303. doi: 10.1128/IAI.01577-08. Epub 2009 Mar 23.
2
Essential role of the glucosyltransferase activity in Clostridium difficile toxin-induced secretion of TNF-alpha by macrophages.
Microb Pathog. 2009 Jun;46(6):298-305. doi: 10.1016/j.micpath.2009.03.002. Epub 2009 Mar 24.
3
Clostridium difficile Toxin A Undergoes Clathrin-Independent, PACSIN2-Dependent Endocytosis.
PLoS Pathog. 2016 Dec 12;12(12):e1006070. doi: 10.1371/journal.ppat.1006070. eCollection 2016 Dec.
4
Use of a neutralizing antibody helps identify structural features critical for binding of toxin TcdA to the host cell surface.
J Biol Chem. 2017 Sep 1;292(35):14401-14412. doi: 10.1074/jbc.M117.781112. Epub 2017 Jul 13.
5
Overexpression of the Endosomal Anion/Proton Exchanger ClC-5 Increases Cell Susceptibility toward Toxins TcdA and TcdB.
Front Cell Infect Microbiol. 2017 Mar 13;7:67. doi: 10.3389/fcimb.2017.00067. eCollection 2017.
8
A neutralizing antibody that blocks delivery of the enzymatic cargo of toxin TcdB into host cells.
J Biol Chem. 2018 Jan 19;293(3):941-952. doi: 10.1074/jbc.M117.813428. Epub 2017 Nov 27.
9
Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain.
J Biol Chem. 2011 Mar 18;286(11):8961-76. doi: 10.1074/jbc.M110.198754. Epub 2011 Jan 7.
10
Antibody against TcdB, but not TcdA, prevents development of gastrointestinal and systemic Clostridium difficile disease.
J Infect Dis. 2013 Jan 15;207(2):323-30. doi: 10.1093/infdis/jis669. Epub 2012 Nov 2.

引用本文的文献

2
Antibody-dependent enhancement of toxicity of myotoxin II from Bothrops asper.
Nat Commun. 2024 Jan 16;15(1):173. doi: 10.1038/s41467-023-42624-5.
3
Neutralizing epitopes on toxin A revealed by the structures of two camelid VHH antibodies.
Front Immunol. 2022 Nov 16;13:978858. doi: 10.3389/fimmu.2022.978858. eCollection 2022.
4
Application of recombinant antibodies for treatment of infection: Current status and future perspective.
Front Immunol. 2022 Aug 23;13:972930. doi: 10.3389/fimmu.2022.972930. eCollection 2022.
5
Development of an Effective Nontoxigenic Clostridioides difficile-Based Oral Vaccine against C. difficile Infection.
Microbiol Spectr. 2022 Jun 29;10(3):e0026322. doi: 10.1128/spectrum.00263-22. Epub 2022 May 18.
6
Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy.
Theranostics. 2021 Apr 7;11(12):6033-6043. doi: 10.7150/thno.48868. eCollection 2021.
7
A probiotic yeast-based immunotherapy against infection.
Sci Transl Med. 2020 Oct 28;12(567). doi: 10.1126/scitranslmed.aax4905.
8
Novel Chimeric Protein Vaccines Against Infection.
Front Immunol. 2018 Oct 22;9:2440. doi: 10.3389/fimmu.2018.02440. eCollection 2018.
10
Prospects from systems serology research.
Immunology. 2018 Mar;153(3):279-289. doi: 10.1111/imm.12861. Epub 2017 Dec 1.

本文引用的文献

1
Essential role of the glucosyltransferase activity in Clostridium difficile toxin-induced secretion of TNF-alpha by macrophages.
Microb Pathog. 2009 Jun;46(6):298-305. doi: 10.1016/j.micpath.2009.03.002. Epub 2009 Mar 24.
2
Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium.
BMC Microbiol. 2008 Nov 6;8:192. doi: 10.1186/1471-2180-8-192.
3
gp96 is a human colonocyte plasma membrane binding protein for Clostridium difficile toxin A.
Infect Immun. 2008 Jul;76(7):2862-71. doi: 10.1128/IAI.00326-08. Epub 2008 Apr 14.
4
Structure and mode of action of clostridial glucosylating toxins: the ABCD model.
Trends Microbiol. 2008 May;16(5):222-9. doi: 10.1016/j.tim.2008.01.011. Epub 2008 Apr 18.
5
Fc receptor-mediated, antibody-dependent enhancement of bacteriophage lambda-mediated gene transfer in mammalian cells.
Virology. 2008 Apr 10;373(2):274-86. doi: 10.1016/j.virol.2007.12.013. Epub 2008 Jan 14.
6
Association between IgG2 and IgG3 subclass responses to toxin A and recurrent Clostridium difficile-associated disease.
Clin Gastroenterol Hepatol. 2007 Jun;5(6):707-13. doi: 10.1016/j.cgh.2007.02.025.
7
Autocatalytic cleavage of Clostridium difficile toxin B.
Nature. 2007 Mar 22;446(7134):415-9. doi: 10.1038/nature05622. Epub 2007 Mar 4.
9
Identification of Clostridium difficile toxin B cardiotoxicity using a zebrafish embryo model of intoxication.
Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14176-81. doi: 10.1073/pnas.0604725103. Epub 2006 Sep 11.
10
Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters.
Infect Immun. 2006 Nov;74(11):6339-47. doi: 10.1128/IAI.00982-06. Epub 2006 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验