Manolopoulou Marika, Guo Qing, Malito Enrico, Schilling Alexander B, Tang Wei-Jen
Ben-May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, USA.
J Biol Chem. 2009 May 22;284(21):14177-88. doi: 10.1074/jbc.M900068200. Epub 2009 Mar 25.
Insulin is a hormone vital for glucose homeostasis, and insulin-degrading enzyme (IDE) plays a key role in its clearance. IDE exhibits a remarkable specificity to degrade insulin without breaking the disulfide bonds that hold the insulin A and B chains together. Using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry to obtain high mass accuracy, and electron capture dissociation (ECD) to selectively break the disulfide bonds in gas phase fragmentation, we determined the cleavage sites and composition of human insulin fragments generated by human IDE. Our time-dependent analysis of IDE-digested insulin fragments reveals that IDE is highly processive in its initial cleavage at the middle of both the insulin A and B chains. This ensures that IDE effectively splits insulin into inactive N- and C-terminal halves without breaking the disulfide bonds. To understand the molecular basis of the recognition and unfolding of insulin by IDE, we determined a 2.6-A resolution insulin-bound IDE structure. Our structure reveals that IDE forms an enclosed catalytic chamber that completely engulfs and intimately interacts with a partially unfolded insulin molecule. This structure also highlights how the unique size, shape, charge distribution, and exosite of the IDE catalytic chamber contribute to its high affinity ( approximately 100 nm) for insulin. In addition, this structure shows how IDE utilizes the interaction of its exosite with the N terminus of the insulin A chain as well as other properties of the catalytic chamber to guide the unfolding of insulin and allowing for the processive cleavages.
胰岛素是一种对葡萄糖稳态至关重要的激素,胰岛素降解酶(IDE)在其清除过程中起关键作用。IDE对降解胰岛素具有显著的特异性,不会破坏将胰岛素A链和B链连接在一起的二硫键。利用傅里叶变换离子回旋共振(FTICR)质谱获得高质量精度,并通过电子捕获解离(ECD)在气相碎片化过程中选择性地断裂二硫键,我们确定了人IDE产生的人胰岛素片段的切割位点和组成。我们对IDE消化的胰岛素片段进行的时间依赖性分析表明,IDE在胰岛素A链和B链中间的初始切割过程中具有高度的连续性。这确保了IDE有效地将胰岛素分裂成无活性的N端和C端两半,而不会破坏二硫键。为了理解IDE对胰岛素的识别和展开的分子基础,我们确定了分辨率为2.6埃的胰岛素结合IDE结构。我们的结构表明,IDE形成了一个封闭的催化腔,该催化腔完全包围并与部分展开的胰岛素分子密切相互作用。该结构还突出了IDE催化腔独特的大小、形状、电荷分布和外部位点如何促成其对胰岛素的高亲和力(约100纳米)。此外,该结构展示了IDE如何利用其外部位点与胰岛素A链N端的相互作用以及催化腔的其他特性来引导胰岛素的展开并实现连续切割。