Suppr超能文献

通过冷冻电镜的整体研究阐明了人胰岛素降解酶捕获和降解胰岛素的机制。

Ensemble cryoEM elucidates the mechanism of insulin capture and degradation by human insulin degrading enzyme.

机构信息

National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States.

Ben-May Institute for Cancer Research, The University of Chicago, Chicago, United States.

出版信息

Elife. 2018 Mar 29;7:e33572. doi: 10.7554/eLife.33572.

Abstract

Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.

摘要

胰岛素降解酶(IDE)在降解 2 型糖尿病、阿尔茨海默病、炎症和其他人类疾病中至关重要的肽中发挥关键作用。然而,IDE 识别易形成淀粉样纤维的肽的过程仍未得到解决。我们使用 cryoEM 来了解 apo 和胰岛素结合的二聚体 IDE 状态,揭示了 IDE 在同源的~55 kDa N-和 C-末端两半之间显示出一个大开口,允许根据大小和电荷互补性进行选择性的底物捕获。我们还使用 cryoEM、X 射线晶体学、SAXS 和 HDX-MS 来阐明淀粉样肽如何稳定无序的 IDE 催化裂缝的分子基础,从而通过底物辅助催化诱导选择性降解。此外,我们的胰岛素结合 IDE 结构解释了 IDE 如何通过随机切割两条链而不打破二硫键来连续降解胰岛素。总之,我们的研究为 IDE 如何选择性降解淀粉样肽提供了机制,并为开发基于 IDE 的治疗方法提供了结构见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e81/5910022/e8f38b4fbc8c/elife-33572-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验