Suppr超能文献

人胰岛素降解酶识别短肽底物及半胱氨酸定向修饰的分子基础。

Molecular bases for the recognition of short peptide substrates and cysteine-directed modifications of human insulin-degrading enzyme.

作者信息

Malito Enrico, Ralat Luis A, Manolopoulou Marika, Tsay Julie L, Wadlington Natasha L, Tang Wei-Jen

机构信息

Ben-May Department for Cancer Research, Biological Science Collegiate Division, and Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

Biochemistry. 2008 Dec 2;47(48):12822-34. doi: 10.1021/bi801192h.

Abstract

Insulin degrading enzyme (IDE) utilizes a large catalytic chamber to selectively bind and degrade peptide substrates such as insulin and amyloid beta (Abeta). Tight interactions with substrates occur at an exosite located approximately 30 A away from the catalytic center that anchors the N-terminus of substrates to facilitate binding and subsequent cleavages at the catalytic site. However, IDE also degrades peptide substrates that are too short to occupy both the catalytic site and the exosite simultaneously. Here, we use kinins as a model system to address the kinetics and regulation of human IDE with short peptides. IDE specifically degrades bradykinin and kallidin at the Pro/Phe site. A 1.9 A crystal structure of bradykinin-bound IDE reveals the binding of bradykinin to the exosite and not to the catalytic site. In agreement with observed high K(m) values, this suggests low affinity of bradykinin for IDE. This structure also provides the molecular basis on how the binding of short peptides at the exosite could regulate substrate recognition. We also found that human IDE is potently inhibited by physiologically relevant concentrations of S-nitrosylation and oxidation agents. Cysteine-directed modifications play a key role, since an IDE mutant devoid of all 13 cysteines is insensitive to the inhibition by S-nitrosoglutathione, hydrogen peroxide, or N-ethylmaleimide. Specifically, cysteine 819 of human IDE is located inside the catalytic chamber pointing toward an extended hydrophobic pocket and is critical for the inactivation. Thiol-directed modification of this residue likely causes local structural perturbation to reduce substrate binding and catalysis.

摘要

胰岛素降解酶(IDE)利用一个大的催化腔室来选择性地结合并降解肽底物,如胰岛素和β-淀粉样蛋白(Aβ)。与底物的紧密相互作用发生在一个离催化中心约30埃的外部位点,该位点锚定底物的N端以促进结合并随后在催化位点进行切割。然而,IDE也会降解太短而无法同时占据催化位点和外部位点的肽底物。在这里,我们使用激肽作为模型系统来研究人IDE与短肽的动力学和调节。IDE在Pro/Phe位点特异性降解缓激肽和胰激肽。缓激肽结合的IDE的1.9埃晶体结构揭示了缓激肽与外部位点而非催化位点的结合。与观察到的高K(m)值一致,这表明缓激肽对IDE的亲和力较低。该结构还提供了短肽在外部位点的结合如何调节底物识别的分子基础。我们还发现,人IDE受到生理相关浓度的S-亚硝基化和氧化剂的强烈抑制。半胱氨酸定向修饰起关键作用,因为缺乏所有13个半胱氨酸的IDE突变体对S-亚硝基谷胱甘肽、过氧化氢或N-乙基马来酰亚胺的抑制不敏感。具体而言,人IDE的半胱氨酸819位于催化腔内,指向一个延伸的疏水口袋,对失活至关重要。该残基的硫醇定向修饰可能会导致局部结构扰动,从而减少底物结合和催化作用。

相似文献

8
Molecular Determinants of Substrate Specificity in Human Insulin-Degrading Enzyme.人胰岛素降解酶底物特异性的分子决定因素
Biochemistry. 2018 Aug 14;57(32):4903-4914. doi: 10.1021/acs.biochem.8b00474. Epub 2018 Jul 25.
9
Molecular basis for the thiol sensitivity of insulin-degrading enzyme.胰岛素降解酶硫醇敏感性的分子基础。
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9582-7. doi: 10.1073/pnas.0801261105. Epub 2008 Jul 8.

引用本文的文献

4
The Structures and Functions of VZV Glycoproteins.VZV 糖蛋白的结构与功能。
Curr Top Microbiol Immunol. 2023;438:25-58. doi: 10.1007/82_2021_243.

本文引用的文献

2
Phaser crystallographic software.相位结晶学软件。
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
3
Molecular basis for the thiol sensitivity of insulin-degrading enzyme.胰岛素降解酶硫醇敏感性的分子基础。
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9582-7. doi: 10.1073/pnas.0801261105. Epub 2008 Jul 8.
10
Nitrosative stress and pathogenesis of insulin resistance.亚硝化应激与胰岛素抵抗的发病机制
Antioxid Redox Signal. 2007 Mar;9(3):319-29. doi: 10.1089/ars.2006.1464.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验