Mancl Jordan M, Liang Wenguang G, Bayhi Nicholas L, Wei Hui, Carragher Bridget, Potter Clinton S, Tang Wei-Jen
Ben-May Institute for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.
Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, New York, 10027, USA.
bioRxiv. 2025 Jan 4:2024.12.30.630732. doi: 10.1101/2024.12.30.630732.
Insulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ~55 kDa N- and C- domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate. Here, we present five cryoEM structures of the IDE dimer at 3.0-4.1 Å resolution, obtained in the presence of a sub-saturating concentration of insulin. Analysis of the heterogeneity within the particle populations comprising these structures combined with all-atom molecular dynamics (MD) simulations permitted a comprehensive characterization of IDE conformational dynamics. Our analysis identified the structural basis and key residues for these dynamics that were not revealed by IDE static structures. Notably arginine-668 serves as a molecular latch mediating the open-close transition and facilitates key protein motions through charge-swapping interactions at the IDE-N/C interface. Our size-exclusion chromatography-coupled small-angle X-ray scattering and enzymatic assays of an arginine-668 to alanine mutant indicate a profound alteration of conformational dynamics and catalytic activity. Taken together, this work highlights the power of integrating experimental and computational methodologies to understand protein dynamics, offers the molecular basis of unfoldase activity of IDE, and provides a new path forward towards the development of substrate-specific modulators of IDE activity.
胰岛素降解酶(IDE)是一种二聚体的110 kDa M16A锌金属蛋白酶,可降解形状和序列各异的淀粉样生成肽,包括胰岛素、胰淀素和淀粉样β蛋白,以防止有毒淀粉样纤维的形成。IDE有一个由四个同源亚结构域组成的中空催化腔,这些亚结构域组织成两个约55 kDa的N结构域和C结构域(分别为IDE-N和IDE-C),肽在其中结合、展开并重新定位以进行蛋白水解。已知IDE会在准备催化的闭合状态和能够释放切割产物并结合新底物的开放状态之间转变。在这里,我们展示了在亚饱和浓度胰岛素存在下获得的分辨率为3.0 - 4.1 Å的IDE二聚体的五个冷冻电镜结构。对构成这些结构的颗粒群体内的异质性进行分析,并结合全原子分子动力学(MD)模拟,从而对IDE的构象动力学进行了全面表征。我们的分析确定了这些动力学的结构基础和关键残基,而这些在IDE的静态结构中并未揭示。值得注意的是,精氨酸 - 668作为分子锁,介导开闭转变,并通过IDE - N/C界面处的电荷交换相互作用促进关键的蛋白质运动。我们对精氨酸 - 668到丙氨酸突变体进行的尺寸排阻色谱 - 耦合小角X射线散射和酶活性测定表明,其构象动力学和催化活性发生了深刻变化。综上所述,这项工作突出了整合实验和计算方法以理解蛋白质动力学的作用,提供了IDE解折叠酶活性的分子基础,并为开发IDE活性的底物特异性调节剂提供了一条新途径。