van den Bosch Pim L F, de Graaff Marco, Fortuny-Picornell Marc, van Leerdam Robin C, Janssen Albert J H
Sub-department of Environmental Technology, Wageningen University, Bomenweg 2, P. O. Box 8129, 6700 EV Wageningen, The Netherlands.
Appl Microbiol Biotechnol. 2009 Jun;83(3):579-87. doi: 10.1007/s00253-009-1951-6. Epub 2009 Mar 31.
To avoid problems related to the discharge of sulfidic spent caustics, a biotechnological process is developed for the treatment of gases containing both hydrogen sulfide and methanethiol. The process operates at natron-alkaline conditions (>1 mol L(-1) of sodium- and potassium carbonates and a pH of 8.5-10) to enable the treatment of gases with a high partial CO(2) pressure. In the process, methanethiol reacts with biologically produced sulfur particles to form a complex mixture predominantly consisting of inorganic polysulfides, dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS). The effect of these organic sulfur compounds on the biological oxidation of sulfide to elemental sulfur was studied with natron-alkaliphilic bacteria belonging to the genus Thioalkalivibrio. Biological oxidation rates were reduced by 50% at 0.05 mM methanethiol, while for DMDS and DMTS, this was estimated to occur at 1.5 and 1.0 mM, respectively. The inhibiting effect of methanethiol on biological sulfide oxidation diminished due to its reaction with biologically produced sulfur particles. This reaction increases the feasibility of biotechnological treatment of gases containing both hydrogen sulfide and methanethiol at natron-alkaline conditions.
为避免与含硫废碱液排放相关的问题,开发了一种生物技术工艺来处理同时含有硫化氢和甲硫醇的气体。该工艺在天然碱碱性条件下(碳酸钠和碳酸钾浓度>1 mol L(-1),pH值为8.5 - 10)运行,以能够处理高二氧化碳分压的气体。在该工艺中,甲硫醇与生物产生的硫颗粒反应,形成主要由无机多硫化物、二甲基二硫醚(DMDS)和二甲基三硫醚(DMTS)组成的复杂混合物。用硫碱弧菌属的嗜天然碱细菌研究了这些有机硫化合物对硫化物生物氧化为元素硫的影响。在甲硫醇浓度为0.05 mM时,生物氧化速率降低了50%,而对于DMDS和DMTS,估计分别在1.5 mM和1.0 mM时发生这种情况。由于甲硫醇与生物产生的硫颗粒反应,其对生物硫化物氧化的抑制作用减弱。该反应增加了在天然碱碱性条件下对同时含有硫化氢和甲硫醇的气体进行生物技术处理的可行性。