Issever Ahi S, Link Thomas M, Kentenich Marie, Rogalla Patrik, Schwieger Karsten, Huber Markus B, Burghardt Andrew J, Majumdar Sharmila, Diederichs Gerd
Department of Radiology, Charite' Campus Mitte, Universitaetsmedizin Berlin, Berlin, Germany.
J Bone Miner Res. 2009 Sep;24(9):1628-37. doi: 10.1359/jbmr.090311.
Assessment of trabecular microarchitecture may improve estimation of biomechanical strength, but visualization of trabecular bone structure in vivo is challenging. We tested the feasibility of assessing trabecular microarchitecture in the spine using multidetector CT (MDCT) on intact human cadavers in an experimental in vivo-like setup. BMD, bone structure (e.g., bone volume/total volume = BV/TV; trabecular thickness = Tb.Th; structure model index = SMI) and bone texture parameters were evaluated in 45 lumbar vertebral bodies using MDCT (mean in-plane pixel size, 274 microm(2); slice thickness, 500 microm). These measures were correlated with structure measures assessed with microCT at an isotropic spatial resolution of 16 microm and to microfinite element models (microFE) of apparent modulus and stiffness. MDCT-derived BMD and structure measures showed significant correlations to the density and structure obtained by microCT (BMD, R(2) = 0.86, p < 0.0001; BV/TV, R(2) = 0.64, p < 0.0001; Tb.Th, R(2) = 0.36, p < 0.01). When comparing microCT-derived measures with microFE models, the following correlations (p < 0.001) were found for apparent modulus and stiffness, respectively: BMD (R(2) = 0.58 and 0.66), BV/TV (R(2) = 0.44 and 0.58), and SMI (R(2) = 0.44 and 0.49). However, the overall highest correlation (p < 0.001) with microFE app. modulus (R(2) = 0.75) and stiffness (R(2) = 0.76) was achieved by the combination of QCT-derived BMD with the bone texture measure Minkowski Dimension. In summary, although still limited by its spatial resolution, trabecular bone structure assessment using MDCT is overall feasible. However, when comparing with microFE-derived bone properties, BMD is superior compared with single parameters for microarchitecture, and correlations further improve when combining with texture measures.
评估小梁微结构可能会改善对生物力学强度的估计,但在体内可视化小梁骨结构具有挑战性。我们在类似体内实验的设置中,对完整的人体尸体使用多探测器CT(MDCT)测试了评估脊柱小梁微结构的可行性。使用MDCT(平面平均像素大小,274微米²;切片厚度,500微米)在45个腰椎椎体中评估骨密度(BMD)、骨结构(例如,骨体积/总体积 = BV/TV;小梁厚度 = Tb.Th;结构模型指数 = SMI)和骨纹理参数。这些测量值与在16微米各向同性空间分辨率下用显微CT评估的结构测量值以及表观模量和刚度的微观有限元模型(microFE)相关。MDCT得出的BMD和结构测量值与显微CT获得的密度和结构显示出显著相关性(BMD,R² = 0.86,p < 0.0001;BV/TV,R² = 0.64,p < 0.0001;Tb.Th,R² = 0.36,p < 0.01)。当将显微CT得出的测量值与microFE模型进行比较时,分别发现表观模量和刚度的以下相关性(p < 0.001):BMD(R² = 0.58和0.66)、BV/TV(R² = 0.44和0.58)以及SMI(R² = 0.44和0.49)。然而,QCT得出的BMD与骨纹理测量值闵可夫斯基维数相结合,与microFE表观模量(R² = 0.75)和刚度(R² = 0.76)的总体相关性最高(p < 0.001)。总之,尽管仍受其空间分辨率限制,但使用MDCT评估小梁骨结构总体上是可行的。然而,与microFE得出的骨特性相比,BMD优于小梁微结构的单一参数,并且与纹理测量值相结合时相关性会进一步提高。