Suppr超能文献

趋化因子受体和其他G蛋白偶联受体。

Chemokine receptors and other G protein-coupled receptors.

作者信息

Lodowski David T, Palczewski Krzysztof

机构信息

Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA.

出版信息

Curr Opin HIV AIDS. 2009 Mar;4(2):88-95. doi: 10.1097/COH.0b013e3283223d8d.

Abstract

PURPOSE OF REVIEW

Class A G protein-coupled receptors (GPCRs), including the chemokine receptors, CCR5 and CXCR4, share a seven transmembrane-spanning alpha-helix architecture that accommodates signal propagation from across biological membranes. CXCR4 and CCR5 are utilized as co-receptors during HIV viral entry and, therefore, crystal structures of GPCRs aid in the understanding of their function in viral entry.

RECENT FINDINGS

Recent progress in structure determination of class A GPCRs, which include vertebrate and invertebrate rhodopsin as well as adrenergic and adenosine receptors, provides molecular templates for how this diverse group of transmembrane receptors functions. Each of these GPCRs differs in how specific ligands bind to the transmembrane core, underscoring that additional structures of GPCRs from other subfamilies are needed to facilitate rational drug design. More recent studies also indicate a need to consider the more complex character of GPCRs, such as their oligomerization and dynamics.

SUMMARY

Recently, the atomic structures of invertebrate rhodopsin, beta1-adrenergic and beta2-adrenergic receptors and the A(2A)-adenosine receptor have been solved via X-ray crystallography. The impact that these structures have on the biochemistry of viral entry and signal transduction is discussed. Because the chemokine receptors have proven refractory to structural studies thus far, further structural study of the chemokine receptors will be essential to understanding ligand binding, activation and function as co-receptors during viral entry.

摘要

综述目的

A类G蛋白偶联受体(GPCR),包括趋化因子受体CCR5和CXCR4,具有七跨膜α螺旋结构,可实现跨生物膜的信号传导。CXCR4和CCR5在HIV病毒进入过程中用作共受体,因此,GPCR的晶体结构有助于理解其在病毒进入中的功能。

最新发现

A类GPCR结构测定的最新进展,包括脊椎动物和无脊椎动物视紫红质以及肾上腺素能和腺苷受体,为这类多样的跨膜受体如何发挥功能提供了分子模板。这些GPCR中的每一种在特定配体与跨膜核心结合的方式上都有所不同,这突出表明需要其他亚家族GPCR的更多结构来促进合理的药物设计。最近的研究还表明需要考虑GPCR更复杂的特性,例如它们的寡聚化和动力学。

总结

最近,通过X射线晶体学解析了无脊椎动物视紫红质、β1肾上腺素能受体和β2肾上腺素能受体以及A2A腺苷受体的原子结构。讨论了这些结构对病毒进入和信号转导生物化学的影响。由于到目前为止趋化因子受体已被证明难以进行结构研究,因此对趋化因子受体进行进一步的结构研究对于理解病毒进入过程中作为共受体的配体结合、激活和功能至关重要。

相似文献

1
Chemokine receptors and other G protein-coupled receptors.
Curr Opin HIV AIDS. 2009 Mar;4(2):88-95. doi: 10.1097/COH.0b013e3283223d8d.
2
X-ray structure breakthroughs in the GPCR transmembrane region.
Biochem Pharmacol. 2009 Jul 1;78(1):11-20. doi: 10.1016/j.bcp.2009.02.012. Epub 2009 Feb 27.
3
Activation of G protein-coupled receptors: beyond two-state models and tertiary conformational changes.
Annu Rev Pharmacol Toxicol. 2008;48:107-41. doi: 10.1146/annurev.pharmtox.48.113006.094630.
4
Modern homology modeling of G-protein coupled receptors: which structural template to use?
J Med Chem. 2009 Aug 27;52(16):5207-16. doi: 10.1021/jm9005252.
5
Structural studies of G protein-coupled receptors.
IUBMB Life. 2016 Nov;68(11):894-903. doi: 10.1002/iub.1578. Epub 2016 Oct 20.
6
G protein-coupled receptors--recent advances.
Acta Biochim Pol. 2012;59(4):515-29. Epub 2012 Dec 18.
7
Structure and dynamics of G-protein coupled receptors.
Adv Exp Med Biol. 2014;796:37-54. doi: 10.1007/978-94-007-7423-0_3.
9
The year in G protein-coupled receptor research.
Mol Endocrinol. 2010 Jan;24(1):261-74. doi: 10.1210/me.2009-0473. Epub 2009 Dec 17.
10
Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
Biochemistry. 2008 Oct 21;47(42):11013-23. doi: 10.1021/bi800891r. Epub 2008 Sep 27.

引用本文的文献

1
Protein overexpression can induce the elongation of cell membrane nanodomains.
Biophys J. 2023 Jun 6;122(11):2112-2124. doi: 10.1016/j.bpj.2022.12.009. Epub 2022 Dec 7.
2
Cancer-Associated Membrane Protein as Targeted Therapy for Bladder Cancer.
Pharmaceutics. 2022 Oct 18;14(10):2218. doi: 10.3390/pharmaceutics14102218.
3
Quantum tunnelling in the context of SARS-CoV-2 infection.
Sci Rep. 2022 Oct 8;12(1):16929. doi: 10.1038/s41598-022-21321-1.
4
CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance.
Int J Inflam. 2022 Sep 17;2022:4558159. doi: 10.1155/2022/4558159. eCollection 2022.
5
Using accelerated molecular dynamics simulation to shed light on the mechanism of activation/deactivation upon mutations for CCR5.
RSC Adv. 2018 Nov 13;8(66):37855-37865. doi: 10.1039/c8ra07686c. eCollection 2018 Nov 7.
6
ACKR1 favors transcellular over paracellular T-cell diapedesis across the blood-brain barrier in neuroinflammation in vitro.
Eur J Immunol. 2022 Jan;52(1):161-177. doi: 10.1002/eji.202149238. Epub 2021 Sep 30.
7
Genetic variation in the chemokine receptor 5 gene and course of HIV infection; review on genetics and immunological aspect.
Genes Dis. 2020 Apr 18;8(4):475-483. doi: 10.1016/j.gendis.2020.04.007. eCollection 2021 Jul.
8
CXC Chemokines as Therapeutic Targets and Prognostic Biomarkers in Skin Cutaneous Melanoma Microenvironment.
Front Oncol. 2021 Mar 9;11:619003. doi: 10.3389/fonc.2021.619003. eCollection 2021.
9
Neuroimmune Mechanisms in Signaling of Pain During Acute Kidney Injury (AKI).
Front Med (Lausanne). 2020 Aug 7;7:424. doi: 10.3389/fmed.2020.00424. eCollection 2020.
10
The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine.
Cytokine Growth Factor Rev. 2020 Jun;53:53-62. doi: 10.1016/j.cytogfr.2020.04.004. Epub 2020 Apr 23.

本文引用的文献

1
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist.
Science. 2008 Nov 21;322(5905):1211-7. doi: 10.1126/science.1164772. Epub 2008 Oct 2.
2
Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14808-13. doi: 10.1073/pnas.0803103105. Epub 2008 Sep 23.
3
New approaches in the treatment of HIV/AIDS - focus on maraviroc and other CCR5 antagonists.
Ther Clin Risk Manag. 2008 Apr;4(2):473-85. doi: 10.2147/tcrm.s1997.
4
Alternative models for two crystal structures of bovine rhodopsin.
Acta Crystallogr D Biol Crystallogr. 2008 Aug;D64(Pt 8):902-4. doi: 10.1107/S0907444908017162. Epub 2008 Jul 17.
5
Structure of a beta1-adrenergic G-protein-coupled receptor.
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.
6
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
Nature. 2008 Jul 10;454(7201):183-7. doi: 10.1038/nature07063. Epub 2008 Jun 18.
8
Crystal structure of squid rhodopsin.
Nature. 2008 May 15;453(7193):363-7. doi: 10.1038/nature06925.
9
Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region.
J Biol Chem. 2008 Jun 27;283(26):17753-6. doi: 10.1074/jbc.C800040200. Epub 2008 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验