Suppr超能文献

CRM1识别富含亮氨酸的核输出信号的结构基础。

Structural basis for leucine-rich nuclear export signal recognition by CRM1.

作者信息

Dong Xiuhua, Biswas Anindita, Süel Katherine E, Jackson Laurie K, Martinez Rita, Gu Hongmei, Chook Yuh Min

机构信息

Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, Texas 75390-9041, USA.

出版信息

Nature. 2009 Apr 30;458(7242):1136-41. doi: 10.1038/nature07975. Epub 2009 Apr 1.

Abstract

CRM1 (also known as XPO1 and exportin 1) mediates nuclear export of hundreds of proteins through the recognition of the leucine-rich nuclear export signal (LR-NES). Here we present the 2.9 A structure of CRM1 bound to snurportin 1 (SNUPN). Snurportin 1 binds CRM1 in a bipartite manner by means of an amino-terminal LR-NES and its nucleotide-binding domain. The LR-NES is a combined alpha-helical-extended structure that occupies a hydrophobic groove between two CRM1 outer helices. The LR-NES interface explains the consensus hydrophobic pattern, preference for intervening electronegative residues and inhibition by leptomycin B. The second nuclear export signal epitope is a basic surface on the snurportin 1 nucleotide-binding domain, which binds an acidic patch on CRM1 adjacent to the LR-NES site. Multipartite recognition of individually weak nuclear export signal epitopes may be common to CRM1 substrates, enhancing CRM1 binding beyond the generally low affinity LR-NES. Similar energetic construction is also used in multipartite nuclear localization signals to provide broad substrate specificity and rapid evolution in nuclear transport.

摘要

CRM1(也称为XPO1和输出蛋白1)通过识别富含亮氨酸的核输出信号(LR-NES)介导数百种蛋白质的核输出。在此,我们展示了与核小核糖核蛋白转运蛋白1(SNUPN)结合的CRM1的2.9埃结构。核小核糖核蛋白转运蛋白1通过氨基末端的LR-NES及其核苷酸结合结构域以二分方式结合CRM1。LR-NES是一种组合的α螺旋-延伸结构,占据两个CRM1外部螺旋之间的疏水凹槽。LR-NES界面解释了共有疏水模式、对中间电负性残基的偏好以及对雷帕霉素B的抑制作用。第二个核输出信号表位是核小核糖核蛋白转运蛋白1核苷酸结合结构域上的一个碱性表面,它与CRM1上LR-NES位点相邻的一个酸性区域结合。对单个弱核输出信号表位的多部分识别可能是CRM1底物所共有的,从而增强了CRM1的结合,超出了通常较低亲和力的LR-NES。类似的能量构建也用于多部分核定位信号,以提供广泛的底物特异性和核运输中的快速进化。

相似文献

1
Structural basis for leucine-rich nuclear export signal recognition by CRM1.
Nature. 2009 Apr 30;458(7242):1136-41. doi: 10.1038/nature07975. Epub 2009 Apr 1.
4
Correlation of CRM1-NES affinity with nuclear export activity.
Mol Biol Cell. 2018 Aug 15;29(17):2037-2044. doi: 10.1091/mbc.E18-02-0096. Epub 2018 Jun 21.
6
Electrostatic interactions involving the extreme C terminus of nuclear export factor CRM1 modulate its affinity for cargo.
J Biol Chem. 2011 Aug 19;286(33):29325-29335. doi: 10.1074/jbc.M111.245092. Epub 2011 Jun 27.
7
A 2.1-Å-resolution crystal structure of unliganded CRM1 reveals the mechanism of autoinhibition.
J Mol Biol. 2013 Jan 23;425(2):350-64. doi: 10.1016/j.jmb.2012.11.014. Epub 2012 Nov 16.
8
A cellular reporter to evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K.
Cell Mol Life Sci. 2016 Dec;73(24):4685-4699. doi: 10.1007/s00018-016-2292-0. Epub 2016 Jun 16.
9
Nuclear export inhibition through covalent conjugation and hydrolysis of Leptomycin B by CRM1.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1303-8. doi: 10.1073/pnas.1217203110. Epub 2013 Jan 7.
10
An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1.
EMBO J. 2010 Jun 16;29(12):2002-13. doi: 10.1038/emboj.2010.89. Epub 2010 May 18.

引用本文的文献

1
The HIV-1 nuclear export complex reveals the role of RNA in CRM1 cargo recognition.
Mol Cell. 2025 Aug 21;85(16):3108-3122.e7. doi: 10.1016/j.molcel.2025.07.015.
4
Phosphate-dependent nuclear export via a non-classical NES class recognized by exportin Msn5.
Nat Commun. 2025 Mar 16;16(1):2580. doi: 10.1038/s41467-025-57752-3.
7
Therapeutic targeting of exportin-1 beyond nuclear export.
Trends Pharmacol Sci. 2025 Jan;46(1):20-31. doi: 10.1016/j.tips.2024.11.002. Epub 2024 Dec 5.
9
Targeting of nucleo‑cytoplasmic transport factor exportin 1 in malignancy (Review).
Med Int (Lond). 2021 Dec 28;2(1):2. doi: 10.3892/mi.2021.27. eCollection 2022 Jan-Feb.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural basis for assembly and disassembly of the CRM1 nuclear export complex.
Nat Struct Mol Biol. 2009 May;16(5):558-60. doi: 10.1038/nsmb.1586. Epub 2009 Apr 1.
3
Nuclear export signal consensus sequences defined using a localization-based yeast selection system.
Traffic. 2008 Dec;9(12):2053-62. doi: 10.1111/j.1600-0854.2008.00825.x. Epub 2008 Sep 25.
4
Modular organization and combinatorial energetics of proline-tyrosine nuclear localization signals.
PLoS Biol. 2008 Jun 3;6(6):e137. doi: 10.1371/journal.pbio.0060137.
5
Molecular basis for the recognition of snurportin 1 by importin beta.
J Biol Chem. 2008 Mar 21;283(12):7877-84. doi: 10.1074/jbc.M709093200. Epub 2008 Jan 9.
6
A short history of SHELX.
Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22. doi: 10.1107/S0108767307043930. Epub 2007 Dec 21.
7
SnapShot: nuclear transport.
Cell. 2007 Oct 19;131(2):420. doi: 10.1016/j.cell.2007.10.015.
8
Structure-based design of a pathway-specific nuclear import inhibitor.
Nat Struct Mol Biol. 2007 May;14(5):452-4. doi: 10.1038/nsmb1229. Epub 2007 Apr 15.
9
ER targeting signals: more than meets the eye?
Cell. 2006 Dec 1;127(5):877-9. doi: 10.1016/j.cell.2006.11.018.
10
Atomic resolution structures in nuclear transport.
Methods. 2006 Aug;39(4):342-55. doi: 10.1016/j.ymeth.2006.06.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验