Suppr超能文献

使用多模态相干反斯托克斯拉曼散射显微镜对动脉细胞和细胞外基质进行无标记成像。

Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.

作者信息

Wang Han-Wei, Le Thuc T, Cheng Ji-Xin

机构信息

Weldon School of Biomedical Engineering, West Lafayette, IN 47907.

出版信息

Opt Commun. 2008 Apr 1;281(7):1813-1822. doi: 10.1016/j.optcom.2007.07.067.

Abstract

A multimodal nonlinear optical imaging system that integrates coherent anti-Stokes Raman scattering (CARS), sum-frequency generation (SFG), and two-photon excitation fluorescence (TPEF) on the same platform was developed and applied to visualize single cells and extracellular matrix in fresh carotid arteries. CARS signals arising from CH(2)-rich membranes allowed visualization of endothelial cells and smooth muscle cells of the arterial wall. Additionally, CARS microscopy allowed vibrational imaging of elastin and collagen fibrils which are also rich in CH(2) bonds. The extracellular matrix organization were further confirmed by TPEF signals arising from elastin's autofluorescence and SFG signals arising from collagen fibrils' non-centrosymmetric structure. Label-free imaging of significant components of arterial tissues suggests the potential application of multimodal nonlinear optical microscopy to monitor onset and progression of arterial diseases.

摘要

开发了一种在同一平台上集成了相干反斯托克斯拉曼散射(CARS)、和频产生(SFG)和双光子激发荧光(TPEF)的多模态非线性光学成像系统,并将其应用于可视化新鲜颈动脉中的单细胞和细胞外基质。富含CH(2)的膜产生的CARS信号能够可视化动脉壁的内皮细胞和平滑肌细胞。此外,CARS显微镜能够对同样富含CH(2)键的弹性蛋白和胶原纤维进行振动成像。弹性蛋白的自发荧光产生的TPEF信号以及胶原纤维的非中心对称结构产生的SFG信号进一步证实了细胞外基质的组织情况。动脉组织重要成分的无标记成像表明多模态非线性光学显微镜在监测动脉疾病的发生和发展方面具有潜在应用价值。

相似文献

1
Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope.
Opt Commun. 2008 Apr 1;281(7):1813-1822. doi: 10.1016/j.optcom.2007.07.067.
3
Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy.
Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1342-8. doi: 10.1161/ATVBAHA.109.189316. Epub 2009 Jun 11.
5
Multimodal nonlinear microscope based on a compact fiber-format laser source.
Spectrochim Acta A Mol Biomol Spectrosc. 2018 Jan 5;188:135-140. doi: 10.1016/j.saa.2017.06.055. Epub 2017 Jul 5.
6
Hyperspectral imaging with laser-scanning sum-frequency generation microscopy.
Biomed Opt Express. 2017 Aug 29;8(9):4230-4242. doi: 10.1364/BOE.8.004230. eCollection 2017 Sep 1.
8
Label-Free Multiphoton Imaging of Microbes in Root, Mineral, and Soil Matrices with Time-Gated Coherent Raman and Fluorescence Lifetime Imaging.
Environ Sci Technol. 2022 Feb 1;56(3):1994-2008. doi: 10.1021/acs.est.1c05818. Epub 2022 Jan 14.
10
Label-free visualization of cholesteatoma in the mastoid and tympanic membrane using CARS microscopy.
J Otol. 2016 Sep;11(3):127-133. doi: 10.1016/j.joto.2016.09.001. Epub 2016 Sep 10.

引用本文的文献

1
SNR enhanced high-speed two-photon microscopy using a pulse picker and time gating detection.
Sci Rep. 2023 Aug 30;13(1):14244. doi: 10.1038/s41598-023-41270-7.
2
Monitoring membranes: The exploration of biological bilayers with second harmonic generation.
Chem Phys Rev. 2022 Dec;3(4):041307. doi: 10.1063/5.0120888. Epub 2022 Dec 14.
3
Imaging Arm Regeneration: Label-Free Multiphoton Microscopy to Dissect the Process in .
Front Cell Dev Biol. 2022 Feb 4;10:814746. doi: 10.3389/fcell.2022.814746. eCollection 2022.
4
Optical Microscopy and the Extracellular Matrix Structure: A Review.
Cells. 2021 Jul 12;10(7):1760. doi: 10.3390/cells10071760.
5
Label-Free Multiphoton Microscopy for the Detection and Monitoring of Calcific Aortic Valve Disease.
Front Cardiovasc Med. 2021 Jun 11;8:688513. doi: 10.3389/fcvm.2021.688513. eCollection 2021.
6
Widely-tunable synchronisation-free picosecond laser source for multimodal CARS, SHG, and two-photon microscopy.
Biomed Opt Express. 2021 Jan 26;12(2):1010-1019. doi: 10.1364/BOE.411620. eCollection 2021 Feb 1.
9
Fractal dimension and directional analysis of elastic and collagen fiber arrangement in unsectioned arterial tissues affected by atherosclerosis and aging.
J Appl Physiol (1985). 2019 Mar 1;126(3):638-646. doi: 10.1152/japplphysiol.00497.2018. Epub 2019 Jan 10.
10
Direct visualization of the arterial wall water permeability barrier using CARS microscopy.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4805-4810. doi: 10.1073/pnas.1620008114. Epub 2017 Apr 3.

本文引用的文献

1
Optical second harmonic generation in biological systems.
Appl Opt. 1971 Oct 1;10(10):2350-3. doi: 10.1364/AO.10.002350.
2
Scanning coherent anti-Stokes Raman microscope.
Opt Lett. 1982 Aug 1;7(8):350-2. doi: 10.1364/ol.7.000350.
3
Towards CARS Endoscopy.
Opt Express. 2006 May 15;14(10):4427-32. doi: 10.1364/oe.14.004427.
4
Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy.
Opt Express. 2005 Aug 8;13(16):6268-74. doi: 10.1364/opex.13.006268.
7
In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue.
J Microsc. 2007 Feb;225(Pt 2):175-82. doi: 10.1111/j.1365-2818.2007.01729.x.
8
Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues.
Biophys J. 2007 May 1;92(9):3251-9. doi: 10.1529/biophysj.106.089011. Epub 2007 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验