Suppr超能文献

利用差异蛋白质组学对大肠杆菌周质伴侣蛋白SurA的作用进行表征。

Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics.

作者信息

Vertommen Didier, Ruiz Natividad, Leverrier Pauline, Silhavy Thomas J, Collet Jean-François

机构信息

de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.

出版信息

Proteomics. 2009 May;9(9):2432-43. doi: 10.1002/pmic.200800794.

Abstract

Little is known on how beta-barrel proteins are assembled in the outer membrane (OM) of Gram-negative bacteria. SurA has been proposed to be the primary chaperone escorting the bulk mass of OM proteins across the periplasm. However, the impact of SurA deletion on the global OM proteome has not been determined, limiting therefore our understanding of the function of SurA. By using a differential proteomics approach based on 2-D LC-MS(n), we compared the relative abundance of 64 OM proteins, including 23 beta-barrel proteins, in wild-type and surA strains. Unexpectedly, we found that the loss of SurA affects the abundance of eight beta-barrel proteins. Of all the decreased proteins, FhuA and LptD are the only two for which the decreased protein abundance cannot be attributed, at least in part, to decreased mRNA levels in the surA strain. In the case of LptD, an essential protein involved in OM biogenesis, our data support a role for SurA in the assembly of this protein and suggest that LptD is a true SurA substrate. Based on our results, we propose a revised model in which only a subset of OM proteins depends on SurA for proper folding and insertion in the OM.

摘要

关于β-桶状蛋白如何在革兰氏阴性菌的外膜(OM)中组装,目前所知甚少。SurA被认为是护送大部分外膜蛋白穿过周质的主要伴侣蛋白。然而,SurA缺失对整体外膜蛋白质组的影响尚未确定,因此限制了我们对SurA功能的理解。通过使用基于二维液相色谱-质谱联用(2-D LC-MS(n))的差异蛋白质组学方法,我们比较了野生型和surA菌株中64种外膜蛋白的相对丰度,其中包括23种β-桶状蛋白。出乎意料的是,我们发现SurA的缺失影响了8种β-桶状蛋白的丰度。在所有减少的蛋白质中,FhuA和LptD是仅有的两种其蛋白质丰度降低至少部分不能归因于surA菌株中mRNA水平降低的蛋白。就LptD而言,它是一种参与外膜生物合成的必需蛋白,我们的数据支持SurA在该蛋白组装中的作用,并表明LptD是SurA的真正底物。基于我们的结果,我们提出了一个修订模型,其中只有一部分外膜蛋白在正确折叠和插入外膜时依赖于SurA。

相似文献

2
Dissecting the Escherichia coli periplasmic chaperone network using differential proteomics.
Proteomics. 2012 May;12(9):1391-401. doi: 10.1002/pmic.201100633.
3
The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential β-barrel protein LptD.
J Biol Chem. 2010 Sep 17;285(38):29425-33. doi: 10.1074/jbc.M110.119321. Epub 2010 Jul 7.
5
Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli.
Genes Dev. 2007 Oct 1;21(19):2473-84. doi: 10.1101/gad.1581007.
7
PpiD is a player in the network of periplasmic chaperones in Escherichia coli.
BMC Microbiol. 2010 Sep 29;10:251. doi: 10.1186/1471-2180-10-251.
9
Components of SurA required for outer membrane biogenesis in uropathogenic Escherichia coli.
PLoS One. 2008 Oct 6;3(10):e3359. doi: 10.1371/journal.pone.0003359.

引用本文的文献

1
A human gut bacterium antagonizes neighboring bacteria by altering their protein-folding ability.
Cell Host Microbe. 2025 Feb 12;33(2):200-217.e24. doi: 10.1016/j.chom.2025.01.008. Epub 2025 Feb 4.
2
Dual client binding sites in the ATP-independent chaperone SurA.
Nat Commun. 2024 Sep 14;15(1):8071. doi: 10.1038/s41467-024-52021-1.
3
Outer membrane protein assembly mediated by BAM-SurA complexes.
Nat Commun. 2024 Sep 1;15(1):7612. doi: 10.1038/s41467-024-51358-x.
4
Periplasmic Chaperones: Outer Membrane Biogenesis and Envelope Stress.
Annu Rev Microbiol. 2024 Nov;78(1):191-211. doi: 10.1146/annurev-micro-041522-102901. Epub 2024 Nov 7.
6
β-Barrel Assembly Machinery (BAM) Complex as Novel Antibacterial Drug Target.
Molecules. 2023 Apr 27;28(9):3758. doi: 10.3390/molecules28093758.
7
Teasing apart the evolution of lipoprotein trafficking in gram-negative bacteria reveals a bifunctional LolA.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2218473120. doi: 10.1073/pnas.2218473120. Epub 2023 Jan 30.
9
Antibacterial Effects of ZnO Nanodisks: Shape Effect of the Nanostructure on the Lethality in Escherichia coli.
Appl Biochem Biotechnol. 2023 May;195(5):3067-3095. doi: 10.1007/s12010-022-04265-0. Epub 2022 Dec 15.

本文引用的文献

2
Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli.
Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5537-42. doi: 10.1073/pnas.0801196105. Epub 2008 Mar 28.
3
Differential expression of glycosomal and mitochondrial proteins in the two major life-cycle stages of Trypanosoma brucei.
Mol Biochem Parasitol. 2008 Apr;158(2):189-201. doi: 10.1016/j.molbiopara.2007.12.008. Epub 2007 Dec 23.
4
The disulphide isomerase DsbC cooperates with the oxidase DsbA in a DsbD-independent manner.
Mol Microbiol. 2008 Jan;67(2):336-49. doi: 10.1111/j.1365-2958.2007.06030.x. Epub 2007 Nov 25.
5
Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli.
Genes Dev. 2007 Oct 1;21(19):2473-84. doi: 10.1101/gad.1581007.
6
Biogenesis of the gram-negative bacterial outer membrane.
Annu Rev Microbiol. 2007;61:191-214. doi: 10.1146/annurev.micro.61.080706.093245.
7
Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6400-5. doi: 10.1073/pnas.0701579104. Epub 2007 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验