Suppr超能文献

酿酒酵母中内吞途径对辅酶Q6摄取需求的遗传证据。

Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae.

作者信息

Padilla-López Sergio, Jiménez-Hidalgo María, Martín-Montalvo Alejandro, Clarke Catherine F, Navas Plácido, Santos-Ocaña Carlos

机构信息

Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and Centre for Biomedical Research on Rare Diseases (CIBERER), ISCIII, E-41013 Sevilla, Spain.

出版信息

Biochim Biophys Acta. 2009 Jun;1788(6):1238-48. doi: 10.1016/j.bbamem.2009.03.018. Epub 2009 Apr 2.

Abstract

Coenzyme Q is an isoprenylated benzoquinone lipid that functions in respiratory electron transport and as a lipid antioxidant. Dietary supplementation with Q is increasingly used as a therapeutic for treatment of mitochondrial and neurodegenerative diseases, yet little is known regarding the mechanism of its uptake. As opposed to other yeast backgrounds, EG103 strains are unable to import exogenous Q(6) to the mitochondria. Furthermore, the distribution of exogenous Q(6) among endomembranes suggests an impairment of the membrane traffic at the level of the endocytic pathway. This fact was confirmed after the detection of defects in the incorporation of FM4-64 marker and CPY delivery to the vacuole. A similar effect was demonstrated in double mutant strains in Q(6) synthesis and several steps of endocytic process; those cells are unable to uptake exogenous Q(6) to the mitochondria and restore the growth on non-fermentable carbon sources. Additional data about the positive effect of peptone presence for exogenous Q(6) uptake support the hypothesis that Q(6) is transported to mitochondria through an endocytic-based system.

摘要

辅酶Q是一种异戊二烯化的苯醌脂质,在呼吸电子传递中发挥作用,并作为脂质抗氧化剂。膳食补充Q越来越多地被用作治疗线粒体和神经退行性疾病的疗法,但对其摄取机制知之甚少。与其他酵母背景不同,EG103菌株无法将外源性Q(6)导入线粒体。此外,外源性Q(6)在内膜之间的分布表明内吞途径水平的膜运输受损。在检测到FM4-64标记物掺入和羧肽酶Y输送到液泡存在缺陷后,这一事实得到了证实。在Q(6)合成和内吞过程的几个步骤中的双突变菌株中也表现出类似的效果;这些细胞无法将外源性Q(6)摄取到线粒体中,也无法在非发酵碳源上恢复生长。关于蛋白胨对外源性Q(6)摄取的积极作用的其他数据支持了Q(6)通过基于内吞的系统转运到线粒体的假设。

相似文献

1
Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae.
Biochim Biophys Acta. 2009 Jun;1788(6):1238-48. doi: 10.1016/j.bbamem.2009.03.018. Epub 2009 Apr 2.
2
Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants.
J Biol Chem. 2002 Mar 29;277(13):10973-81. doi: 10.1074/jbc.M112222200. Epub 2002 Jan 11.
3
deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10.
J Biol Chem. 2020 May 1;295(18):6023-6042. doi: 10.1074/jbc.RA119.012420. Epub 2020 Mar 23.
4
Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae.
Free Radic Biol Med. 2020 Jul;154:105-118. doi: 10.1016/j.freeradbiomed.2020.04.029. Epub 2020 May 6.
7
Genetic evidence for coenzyme Q requirement in plasma membrane electron transport.
J Bioenerg Biomembr. 1998 Oct;30(5):465-75. doi: 10.1023/a:1020542230308.
8
The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration.
J Biol Chem. 2005 Dec 30;280(52):42627-35. doi: 10.1074/jbc.M510768200. Epub 2005 Oct 17.
9
Hydroxylation of demethoxy-Q6 constitutes a control point in yeast coenzyme Q6 biosynthesis.
Cell Mol Life Sci. 2009 Jan;66(1):173-86. doi: 10.1007/s00018-008-8547-7.
10
Regulation of coenzyme Q biosynthesis in yeast: a new complex in the block.
IUBMB Life. 2014 Feb;66(2):63-70. doi: 10.1002/iub.1243. Epub 2014 Jan 27.

引用本文的文献

1
New Insights on the Uptake and Trafficking of Coenzyme Q.
Antioxidants (Basel). 2023 Jul 6;12(7):1391. doi: 10.3390/antiox12071391.
2
Coenzyme Q biochemistry and biosynthesis.
Trends Biochem Sci. 2023 May;48(5):463-476. doi: 10.1016/j.tibs.2022.12.006. Epub 2023 Jan 24.
5
Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae.
Free Radic Biol Med. 2020 Jul;154:105-118. doi: 10.1016/j.freeradbiomed.2020.04.029. Epub 2020 May 6.
8
Biochemistry of Mitochondrial Coenzyme Q Biosynthesis.
Trends Biochem Sci. 2017 Oct;42(10):824-843. doi: 10.1016/j.tibs.2017.06.008. Epub 2017 Sep 17.
10
Yeast Coq9 controls deamination of coenzyme Q intermediates that derive from para-aminobenzoic acid.
Biochim Biophys Acta. 2015 Sep;1851(9):1227-39. doi: 10.1016/j.bbalip.2015.05.003. Epub 2015 May 23.

本文引用的文献

1
Functional characterization of human COQ4, a gene required for Coenzyme Q10 biosynthesis.
Biochem Biophys Res Commun. 2008 Jul 18;372(1):35-9. doi: 10.1016/j.bbrc.2008.04.172. Epub 2008 May 12.
3
Endogenous synthesis of coenzyme Q in eukaryotes.
Mitochondrion. 2007 Jun;7 Suppl(Suppl):S62-71. doi: 10.1016/j.mito.2007.03.007. Epub 2007 Mar 30.
4
Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice.
Free Radic Biol Med. 2006 Feb 1;40(3):480-7. doi: 10.1016/j.freeradbiomed.2005.08.037. Epub 2005 Nov 9.
6
Coenzyme Q distribution in HL-60 human cells depends on the endomembrane system.
Biochim Biophys Acta. 2005 Jul 30;1713(2):129-37. doi: 10.1016/j.bbamem.2005.05.010.
7
Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae.
Biochim Biophys Acta. 2005 Jul 10;1744(3):438-54. doi: 10.1016/j.bbamcr.2005.04.004.
8
SEC18/NSF-independent, protein-sorting pathway from the yeast cortical ER to the plasma membrane.
J Cell Biol. 2005 May 23;169(4):613-22. doi: 10.1083/jcb.200503033.
9
Antioxidant treatment of patients with Friedreich ataxia: four-year follow-up.
Arch Neurol. 2005 Apr;62(4):621-6. doi: 10.1001/archneur.62.4.621.
10
Endothelium-ameliorating effects of statin therapy and coenzyme Q10 reductions in chronic heart failure.
Atherosclerosis. 2005 Mar;179(1):201-6. doi: 10.1016/j.atherosclerosis.2004.10.009. Epub 2004 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验