Suppr超能文献

从表达数据中发现基因网络的计算方法。

Computational methods for discovering gene networks from expression data.

作者信息

Lee Wei-Po, Tzou Wen-Shyong

机构信息

Department of Information Management, National Sun Yat-sen University, Kaohsiung, Taiwan.

出版信息

Brief Bioinform. 2009 Jul;10(4):408-23. doi: 10.1093/bib/bbp028.

Abstract

Designing and conducting experiments are routine practices for modern biologists. The real challenge, especially in the post-genome era, usually comes not from acquiring data, but from subsequent activities such as data processing, analysis, knowledge generation and gaining insight into the research question of interest. The approach of inferring gene regulatory networks (GRNs) has been flourishing for many years, and new methods from mathematics, information science, engineering and social sciences have been applied. We review different kinds of computational methods biologists use to infer networks of varying levels of accuracy and complexity. The primary concern of biologists is how to translate the inferred network into hypotheses that can be tested with real-life experiments. Taking the biologists' viewpoint, we scrutinized several methods for predicting GRNs in mammalian cells, and more importantly show how the power of different knowledge databases of different types can be used to identify modules and subnetworks, thereby reducing complexity and facilitating the generation of testable hypotheses.

摘要

设计和开展实验是现代生物学家的常规做法。真正的挑战,尤其是在后基因组时代,通常并非来自于获取数据,而是来自于后续活动,如数据处理、分析、知识生成以及洞察感兴趣的研究问题。推断基因调控网络(GRN)的方法已经流行多年,并且来自数学、信息科学、工程学和社会科学的新方法也已得到应用。我们综述了生物学家用于推断不同准确性和复杂程度网络的各类计算方法。生物学家主要关心的是如何将推断出的网络转化为可通过实际实验进行检验的假设。从生物学家的角度出发,我们仔细研究了几种预测哺乳动物细胞中GRN的方法,更重要的是展示了如何利用不同类型的不同知识数据库的力量来识别模块和子网络,从而降低复杂性并促进可检验假设的生成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验